Interlayer Engineering Construction of 2D Nb2CTx with Enlarged Interlayer Spacing Towards High Capacity and Rate Capability for Lithium‐Ion Storage

材料科学 扩散 锂(药物) 插层(化学) 离子 分子 纳米技术 化学 无机化学 热力学 物理 有机化学 医学 内分泌学
作者
Mao‐Cheng Liu,Bin-Mei Zhang,Yushan Zhang,Dong‐Ting Zhang,Chen‐Yang Tian,Ling‐Bin Kong,Yuxia Hu
出处
期刊:Batteries & supercaps [Wiley]
卷期号:4 (9): 1473-1481 被引量:8
标识
DOI:10.1002/batt.202100083
摘要

Abstract The Li + storage rate capability and diffusion dynamics in two‐dimensional (2D) materials are mainly determined by the interlayer spacing of materials. Investigating the effects of interlayer spacing on Li + diffusion rate in 2D materials can provide a theoretical guidance for developing the high rate 2D materials for Li + storage. Herein, a novel approach that P‐phenylenediamine (PPDA) electrostatically intercalated into Nb 2 CT x layers is employed to facilitate fast Li + diffusion dynamics and improve diffusion rate for Li + storage. The PPDA molecules existed between Nb 2 CT x layers have “support and dragline” effects on layers structure during Li + insertion/exaction. The PPDA‐Nb 2 CT x not only enlarges interlayer spacing ( d =1.27 nm) to accelerate the Li + diffusion rate, but also enhances the layered structure stability due to the “support and dragline” effects of PPDA molecules. The PPDA‐Nb 2 CT x exhibits the excellent capacity of 400 mAh g −1 at a current density of 0.1 A g −1 and displays a superior capacity retention as 70.2 % at 5.0 A g −1 compared with that of 0.5 A g −1 . The PPDA‐Nb 2 CT x //AC lithium ions hybrid capacitor (LIHC) delivers an excellent power density of 2754.8 W kg −1 at an energy density of 58.3 Wh kg −1 and a capacity retention with 80.0 % at 1.0 A g −1 after 1000 cycles. The interlayer engineering based on electrostatic intercalation provides a novel perspective to expand interlayer spacing, possessing a theoretical guidance for developing the Li + storage materials with high‐rate capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
xianyv发布了新的文献求助10
刚刚
yunxiao完成签到 ,获得积分10
1秒前
彭于彦祖应助科研通管家采纳,获得40
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
jbtjht完成签到,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
zxp发布了新的文献求助30
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
詭詐应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Zn应助科研通管家采纳,获得20
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
詭詐应助科研通管家采纳,获得10
3秒前
左左应助科研通管家采纳,获得10
3秒前
yangyajie发布了新的文献求助10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得50
3秒前
heavenhorse应助科研通管家采纳,获得10
4秒前
星奕完成签到 ,获得积分10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
秀丽烨霖应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
yuanquaner完成签到,获得积分10
4秒前
wj发布了新的文献求助10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559210
求助须知:如何正确求助?哪些是违规求助? 3133831
关于积分的说明 9404212
捐赠科研通 2834006
什么是DOI,文献DOI怎么找? 1557743
邀请新用户注册赠送积分活动 727651
科研通“疑难数据库(出版商)”最低求助积分说明 716383