Batch process monitoring based on global enhanced multiple neighborhoods preserving embedding

嵌入 过程(计算) 计算机科学 批处理 主成分分析 故障检测与隔离 恒虚警率 相似性(几何) 功能(生物学) 数据挖掘 支持向量机 算法 数学 模式识别(心理学) 人工智能 图像(数学) 进化生物学 执行机构 生物 程序设计语言 操作系统
作者
Hongjuan Yao,Xiaoqiang Zhao,Wei Li,Yongyong Hui
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
卷期号:44 (3): 620-633 被引量:5
标识
DOI:10.1177/01423312211044742
摘要

Batch process generally has varying dynamic characteristic that causes low fault detection rate and high false alarm rate, and it is necessary and urgent to monitor batch process. This paper proposes a global enhanced multiple neighborhoods preserving embedding based fault detection strategy for dynamic batch process. Firstly, the angle neighbor is defined and selected to compensate for the insufficient expression for the spatial similarity of samples only by using the distance neighbor, and the time neighbor is introduced to describe the time correlations between samples. These three types of neighbors can fully characterize the similarity of the samples in time and space. Secondly, considering the minimum reconstruction error and the order information of three types of neighbors, an enhanced objective function is constructed to prevent the loss of order information when neighborhood preserving embedding (NPE) calculates the reconstruction weights. Furthermore, the enhanced objective function and a global objective function are organically combined to extract both global and local features, to describe process dynamics and visualize process data in a low-dimensional space. Finally, a monitoring index based on support vector data description is constructed to eliminate adverse effects of non-Gaussian data for monitoring performance. The advantages of the proposed method over principal component analysis, neighborhood preserving embedding, dynamic principal component analysis and time NPE are demonstrated by a numerical example and the penicillin fermentation process simulation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
貔貅发布了新的文献求助10
刚刚
刚刚
ajhs发布了新的文献求助30
2秒前
2秒前
3秒前
wjy321发布了新的文献求助10
4秒前
5秒前
酷炫小熊猫完成签到,获得积分20
5秒前
悟123完成签到 ,获得积分10
6秒前
坦率灵槐发布了新的文献求助10
6秒前
Destiny完成签到,获得积分10
7秒前
8秒前
太叔夜南发布了新的文献求助10
10秒前
10秒前
HSA完成签到,获得积分10
10秒前
沐熙完成签到 ,获得积分10
10秒前
十里关注了科研通微信公众号
11秒前
研友_LaNOdn发布了新的文献求助10
12秒前
double完成签到 ,获得积分10
12秒前
飞快的孱完成签到,获得积分10
13秒前
是我不得开心妍完成签到 ,获得积分10
14秒前
隐形曼青应助星沉静默采纳,获得10
15秒前
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
yyzhou应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
gyf应助科研通管家采纳,获得30
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
无极微光应助科研通管家采纳,获得20
16秒前
852应助科研通管家采纳,获得10
16秒前
16秒前
无极微光应助ggggbaby采纳,获得20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937