Batch process monitoring based on global enhanced multiple neighborhoods preserving embedding

嵌入 过程(计算) 计算机科学 批处理 主成分分析 故障检测与隔离 恒虚警率 相似性(几何) 功能(生物学) 数据挖掘 支持向量机 算法 数学 模式识别(心理学) 人工智能 图像(数学) 进化生物学 执行机构 生物 程序设计语言 操作系统
作者
Hongjuan Yao,Xiaoqiang Zhao,Wei Li,Yongyong Hui
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
卷期号:44 (3): 620-633 被引量:5
标识
DOI:10.1177/01423312211044742
摘要

Batch process generally has varying dynamic characteristic that causes low fault detection rate and high false alarm rate, and it is necessary and urgent to monitor batch process. This paper proposes a global enhanced multiple neighborhoods preserving embedding based fault detection strategy for dynamic batch process. Firstly, the angle neighbor is defined and selected to compensate for the insufficient expression for the spatial similarity of samples only by using the distance neighbor, and the time neighbor is introduced to describe the time correlations between samples. These three types of neighbors can fully characterize the similarity of the samples in time and space. Secondly, considering the minimum reconstruction error and the order information of three types of neighbors, an enhanced objective function is constructed to prevent the loss of order information when neighborhood preserving embedding (NPE) calculates the reconstruction weights. Furthermore, the enhanced objective function and a global objective function are organically combined to extract both global and local features, to describe process dynamics and visualize process data in a low-dimensional space. Finally, a monitoring index based on support vector data description is constructed to eliminate adverse effects of non-Gaussian data for monitoring performance. The advantages of the proposed method over principal component analysis, neighborhood preserving embedding, dynamic principal component analysis and time NPE are demonstrated by a numerical example and the penicillin fermentation process simulation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助迷人雪碧采纳,获得10
1秒前
积极涵阳发布了新的文献求助10
1秒前
田様应助坚定醉蓝采纳,获得10
2秒前
2秒前
大梦龟棠发布了新的文献求助10
3秒前
mmm发布了新的文献求助10
4秒前
99岁扶墙对抗完成签到,获得积分10
4秒前
多米完成签到,获得积分10
5秒前
面向阳光发布了新的文献求助10
5秒前
完美世界应助初秋采纳,获得10
5秒前
无情谷兰完成签到,获得积分10
7秒前
上官若男应助崔风机采纳,获得10
8秒前
10秒前
Zx完成签到 ,获得积分10
10秒前
11秒前
miaojuly给miaojuly的求助进行了留言
12秒前
思源应助劈里啪啦滴毛毛采纳,获得10
13秒前
13秒前
上官若男应助yanjiusheng采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
吭吭菜菜发布了新的文献求助10
15秒前
研友_VZG7GZ应助xiaotian采纳,获得10
16秒前
16秒前
Bruial发布了新的文献求助10
16秒前
西又木完成签到,获得积分10
18秒前
19秒前
19秒前
蓝123456发布了新的文献求助10
19秒前
脑洞疼应助柚子采纳,获得10
19秒前
19秒前
高翔发布了新的文献求助10
20秒前
Hello应助Arnold采纳,获得10
22秒前
22秒前
英吉利25发布了新的文献求助10
23秒前
西又木发布了新的文献求助30
23秒前
23秒前
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642354
求助须知:如何正确求助?哪些是违规求助? 4758746
关于积分的说明 15017371
捐赠科研通 4801005
什么是DOI,文献DOI怎么找? 2566290
邀请新用户注册赠送积分活动 1524440
关于科研通互助平台的介绍 1483953