Machine learning-based statistical analysis for early stage detection of cervical cancer

随机森林 计算机科学 人工智能 特征选择 宫颈癌 机器学习 转化(遗传学) 模式识别(心理学) 决策树 树(集合论) 癌症 数学 医学 数学分析 生物化学 化学 内科学 基因
作者
Mamun Ali,Kawsar Ahmed,Francis M. Bui,Iraj Sadegh Amiri,Syed Muhammad Ibrahim,Julian M.W. Quinn,Mohammad Ali Moni
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:139: 104985-104985 被引量:35
标识
DOI:10.1016/j.compbiomed.2021.104985
摘要

Cervical cancer (CC) is the most common type of cancer in women and remains a significant cause of mortality, particularly in less developed countries, although it can be effectively treated if detected at an early stage. This study aimed to find efficient machine-learning-based classifying models to detect early stage CC using clinical data. We obtained a Kaggle data repository CC dataset which contained four classes of attributes including biopsy, cytology, Hinselmann, and Schiller. This dataset was split into four categories based on these class attributes. Three feature transformation methods, including log, sine function, and Z-score were applied to these datasets. Several supervised machine learning algorithms were assessed for their performance in classification. A Random Tree (RT) algorithm provided the best classification accuracy for the biopsy (98.33%) and cytology (98.65%) data, whereas Random Forest (RF) and Instance-Based K-nearest neighbor (IBk) provided the best performance for Hinselmann (99.16%), and Schiller (98.58%) respectively. Among the feature transformation methods, logarithmic gave the best performance for biopsy datasets whereas sine function was superior for cytology. Both logarithmic and sine functions performed the best for the Hinselmann dataset, while Z-score was best for the Schiller dataset. Various Feature Selection Techniques (FST) methods were applied to the transformed datasets to identify and prioritize important risk factors. The outcomes of this study indicate that appropriate system design and tuning, machine learning methods and classification are able to detect CC accurately and efficiently in its early stages using clinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助王永涛采纳,获得10
刚刚
寒冬完成签到,获得积分10
刚刚
1秒前
1秒前
有一天发布了新的文献求助50
1秒前
2秒前
Gmhoo_发布了新的文献求助10
2秒前
让我康康完成签到 ,获得积分10
3秒前
端庄谷南完成签到 ,获得积分10
3秒前
xm发布了新的文献求助10
3秒前
wh雨发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
华仔应助maozhehai29999采纳,获得10
5秒前
此时此刻完成签到,获得积分10
6秒前
6秒前
zz发布了新的文献求助10
6秒前
经验丰富的菜狗完成签到,获得积分10
8秒前
曹博完成签到,获得积分10
9秒前
Docsiwen完成签到 ,获得积分10
9秒前
10秒前
山色青完成签到,获得积分10
10秒前
ZD发布了新的文献求助10
10秒前
hearan完成签到,获得积分10
10秒前
先一完成签到 ,获得积分10
11秒前
11秒前
11秒前
zhuyuan完成签到,获得积分10
11秒前
11秒前
cjh发布了新的文献求助10
11秒前
自觉问梅发布了新的文献求助10
12秒前
由怜雪完成签到,获得积分10
12秒前
零度寂寞3166完成签到,获得积分10
12秒前
13秒前
万能图书馆应助wh雨采纳,获得10
13秒前
xm完成签到,获得积分10
13秒前
14秒前
luna完成签到,获得积分10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993