Machine learning-based statistical analysis for early stage detection of cervical cancer

随机森林 计算机科学 人工智能 特征选择 宫颈癌 机器学习 转化(遗传学) 模式识别(心理学) 决策树 树(集合论) 癌症 数学 医学 数学分析 生物化学 化学 内科学 基因
作者
Mamun Ali,Kawsar Ahmed,Francis M. Bui,Iraj Sadegh Amiri,Syed Muhammad Ibrahim,Julian M.W. Quinn,Mohammad Ali Moni
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:139: 104985-104985 被引量:35
标识
DOI:10.1016/j.compbiomed.2021.104985
摘要

Cervical cancer (CC) is the most common type of cancer in women and remains a significant cause of mortality, particularly in less developed countries, although it can be effectively treated if detected at an early stage. This study aimed to find efficient machine-learning-based classifying models to detect early stage CC using clinical data. We obtained a Kaggle data repository CC dataset which contained four classes of attributes including biopsy, cytology, Hinselmann, and Schiller. This dataset was split into four categories based on these class attributes. Three feature transformation methods, including log, sine function, and Z-score were applied to these datasets. Several supervised machine learning algorithms were assessed for their performance in classification. A Random Tree (RT) algorithm provided the best classification accuracy for the biopsy (98.33%) and cytology (98.65%) data, whereas Random Forest (RF) and Instance-Based K-nearest neighbor (IBk) provided the best performance for Hinselmann (99.16%), and Schiller (98.58%) respectively. Among the feature transformation methods, logarithmic gave the best performance for biopsy datasets whereas sine function was superior for cytology. Both logarithmic and sine functions performed the best for the Hinselmann dataset, while Z-score was best for the Schiller dataset. Various Feature Selection Techniques (FST) methods were applied to the transformed datasets to identify and prioritize important risk factors. The outcomes of this study indicate that appropriate system design and tuning, machine learning methods and classification are able to detect CC accurately and efficiently in its early stages using clinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mww发布了新的文献求助10
1秒前
归雁完成签到,获得积分10
3秒前
nian完成签到 ,获得积分10
5秒前
7秒前
11完成签到,获得积分10
7秒前
安详砖家发布了新的文献求助10
7秒前
8秒前
EMMACao完成签到,获得积分10
8秒前
xky200125完成签到 ,获得积分10
9秒前
超级板凳完成签到,获得积分10
10秒前
rationality完成签到,获得积分10
10秒前
jojo完成签到 ,获得积分10
11秒前
Jay发布了新的文献求助10
12秒前
12秒前
zyn发布了新的文献求助10
12秒前
传奇3应助ei采纳,获得10
15秒前
7分运气完成签到,获得积分10
15秒前
MARIO发布了新的文献求助10
17秒前
小呆鹿完成签到,获得积分10
17秒前
天真的白凡完成签到 ,获得积分10
19秒前
YG完成签到,获得积分10
19秒前
19秒前
20秒前
QiJiLuLu完成签到,获得积分10
21秒前
无花果应助ATOM采纳,获得10
21秒前
Werner完成签到 ,获得积分10
21秒前
21秒前
22秒前
乐乐完成签到 ,获得积分10
22秒前
24秒前
初初见你发布了新的文献求助10
24秒前
Rui_Rui发布了新的文献求助10
25秒前
合适清完成签到,获得积分10
26秒前
自然幻竹完成签到,获得积分10
26秒前
渣渣凡完成签到,获得积分10
27秒前
automan发布了新的文献求助10
27秒前
28秒前
yang完成签到,获得积分10
29秒前
桑榆发布了新的文献求助10
30秒前
NexusExplorer应助LPP采纳,获得10
32秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339290
求助须知:如何正确求助?哪些是违规求助? 4476138
关于积分的说明 13930647
捐赠科研通 4371604
什么是DOI,文献DOI怎么找? 2401978
邀请新用户注册赠送积分活动 1394933
关于科研通互助平台的介绍 1366848