Machine learning-based statistical analysis for early stage detection of cervical cancer

随机森林 计算机科学 人工智能 特征选择 宫颈癌 机器学习 转化(遗传学) 模式识别(心理学) 决策树 树(集合论) 癌症 数学 医学 基因 内科学 数学分析 生物化学 化学
作者
Mamun Ali,Kawsar Ahmed,Francis M. Bui,Iraj Sadegh Amiri,Syed Muhammad Ibrahim,Julian M.W. Quinn,Mohammad Ali Moni
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:139: 104985-104985 被引量:35
标识
DOI:10.1016/j.compbiomed.2021.104985
摘要

Cervical cancer (CC) is the most common type of cancer in women and remains a significant cause of mortality, particularly in less developed countries, although it can be effectively treated if detected at an early stage. This study aimed to find efficient machine-learning-based classifying models to detect early stage CC using clinical data. We obtained a Kaggle data repository CC dataset which contained four classes of attributes including biopsy, cytology, Hinselmann, and Schiller. This dataset was split into four categories based on these class attributes. Three feature transformation methods, including log, sine function, and Z-score were applied to these datasets. Several supervised machine learning algorithms were assessed for their performance in classification. A Random Tree (RT) algorithm provided the best classification accuracy for the biopsy (98.33%) and cytology (98.65%) data, whereas Random Forest (RF) and Instance-Based K-nearest neighbor (IBk) provided the best performance for Hinselmann (99.16%), and Schiller (98.58%) respectively. Among the feature transformation methods, logarithmic gave the best performance for biopsy datasets whereas sine function was superior for cytology. Both logarithmic and sine functions performed the best for the Hinselmann dataset, while Z-score was best for the Schiller dataset. Various Feature Selection Techniques (FST) methods were applied to the transformed datasets to identify and prioritize important risk factors. The outcomes of this study indicate that appropriate system design and tuning, machine learning methods and classification are able to detect CC accurately and efficiently in its early stages using clinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助cookie采纳,获得10
1秒前
1秒前
斯文败类应助阳尧采纳,获得10
1秒前
2秒前
2秒前
abjz完成签到,获得积分10
2秒前
三千弱水为君饮完成签到,获得积分10
3秒前
3秒前
cata完成签到,获得积分10
3秒前
感谢79转发科研通微信,获得积分50
3秒前
3秒前
troubadourelf发布了新的文献求助10
4秒前
frank发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
感谢超帅冬易转发科研通微信,获得积分50
7秒前
7秒前
8秒前
8秒前
lixia完成签到 ,获得积分10
8秒前
8秒前
9秒前
在水一方应助jy采纳,获得10
9秒前
9秒前
Lucas完成签到,获得积分10
10秒前
10秒前
NorthWang发布了新的文献求助10
10秒前
薄哼哼完成签到,获得积分10
10秒前
troubadourelf完成签到,获得积分10
10秒前
科研小白菜完成签到,获得积分20
11秒前
淡定的思松应助12采纳,获得10
11秒前
lan发布了新的文献求助10
11秒前
韩金龙发布了新的文献求助10
12秒前
12秒前
小飞七应助红毛兔采纳,获得10
12秒前
小仙虎殿下完成签到 ,获得积分10
12秒前
Ethan完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794