Machine learning-based statistical analysis for early stage detection of cervical cancer

随机森林 计算机科学 人工智能 特征选择 宫颈癌 机器学习 转化(遗传学) 模式识别(心理学) 决策树 树(集合论) 癌症 数学 医学 基因 内科学 数学分析 生物化学 化学
作者
Mamun Ali,Kawsar Ahmed,Francis M. Bui,Iraj Sadegh Amiri,Syed Muhammad Ibrahim,Julian M.W. Quinn,Mohammad Ali Moni
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:139: 104985-104985 被引量:35
标识
DOI:10.1016/j.compbiomed.2021.104985
摘要

Cervical cancer (CC) is the most common type of cancer in women and remains a significant cause of mortality, particularly in less developed countries, although it can be effectively treated if detected at an early stage. This study aimed to find efficient machine-learning-based classifying models to detect early stage CC using clinical data. We obtained a Kaggle data repository CC dataset which contained four classes of attributes including biopsy, cytology, Hinselmann, and Schiller. This dataset was split into four categories based on these class attributes. Three feature transformation methods, including log, sine function, and Z-score were applied to these datasets. Several supervised machine learning algorithms were assessed for their performance in classification. A Random Tree (RT) algorithm provided the best classification accuracy for the biopsy (98.33%) and cytology (98.65%) data, whereas Random Forest (RF) and Instance-Based K-nearest neighbor (IBk) provided the best performance for Hinselmann (99.16%), and Schiller (98.58%) respectively. Among the feature transformation methods, logarithmic gave the best performance for biopsy datasets whereas sine function was superior for cytology. Both logarithmic and sine functions performed the best for the Hinselmann dataset, while Z-score was best for the Schiller dataset. Various Feature Selection Techniques (FST) methods were applied to the transformed datasets to identify and prioritize important risk factors. The outcomes of this study indicate that appropriate system design and tuning, machine learning methods and classification are able to detect CC accurately and efficiently in its early stages using clinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水知寒完成签到,获得积分10
1秒前
潇潇暮雨完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
夜雨完成签到,获得积分10
3秒前
谨慎达发布了新的文献求助10
4秒前
领导范儿应助任逍遥采纳,获得10
4秒前
4秒前
JamesPei应助马里奥采纳,获得10
5秒前
5秒前
CYQQ完成签到,获得积分10
6秒前
小不胖鼠发布了新的文献求助20
6秒前
无与伦比发布了新的文献求助10
7秒前
动人的邑发布了新的文献求助10
7秒前
野生菜狗发布了新的文献求助10
10秒前
逗号先生完成签到,获得积分20
10秒前
11秒前
坚强丹雪完成签到,获得积分10
12秒前
13秒前
方远锋完成签到,获得积分10
13秒前
15秒前
16秒前
春一又木发布了新的文献求助10
18秒前
18秒前
aaaa发布了新的文献求助10
18秒前
Phoenix完成签到 ,获得积分10
19秒前
19秒前
ss25发布了新的文献求助10
19秒前
烟花应助野生菜狗采纳,获得10
20秒前
20秒前
丘比特应助刘刘采纳,获得10
20秒前
20秒前
najibveto应助ntrip采纳,获得10
20秒前
22秒前
22秒前
畅快的小虾米完成签到,获得积分10
24秒前
25秒前
齐大风发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151736
求助须知:如何正确求助?哪些是违规求助? 2803153
关于积分的说明 7852024
捐赠科研通 2460525
什么是DOI,文献DOI怎么找? 1309844
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760