Evaluating fish feeding intensity in aquaculture with convolutional neural networks

水产养殖 卷积神经网络 计算机科学 人工神经网络 强度(物理) 光强度 光流 人工智能 养鱼业 渔业 图像(数学) 生物 量子力学 光学 物理
作者
Naomi A. Ubina,Shyi‐Chyi Cheng,Chin-Chun Chang,Hung-Yuan Chen
出处
期刊:Aquacultural Engineering [Elsevier]
卷期号:94: 102178-102178 被引量:102
标识
DOI:10.1016/j.aquaeng.2021.102178
摘要

This paper presents a novel method to evaluate fish feeding intensity for aquaculture fish farming. Determining the level of fish appetite helps optimize fish production and design more efficient aquaculture smart feeding systems. Given an aquaculture surveillance video, our goal is to improve fish feeding intensity evaluation by proposing a two-stage approach: an optical flow neural network is first applied to generate optical flow frames, which are then inputted to a 3D convolution neural network (3D CNN) for fish feeding intensity evaluation. Using an aerial drone, we capture RGB water surface images with significant optical flows from an aquaculture site during the fish feeding activity. The captured images are inputs to our deep optical flow neural network, consisting of the leading neural network layers for video interpolation and the last layer for optical flow regression. Our optical flow detection model calculates the displacement vector of each pixel across two consecutive frames. To construct the training dataset of our CNNs and verify the effectiveness of our proposed approach, we manually annotated the level of fish feeding intensity for each training image frame. In this paper, the fish feeding intensity is categorized into four, i.e., ‘none,’ ‘weak,’ ‘medium’ and ‘strong.’ We compared our method with other state-of-the-art fish feeding intensity evaluations. Our proposed method reached up to 95 % accuracy, which outperforms the existing systems that use CNNs to evaluate the fish feeding intensity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rui2820完成签到,获得积分10
刚刚
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
MchemG应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
MchemG应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
所所应助Lydie采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
MchemG应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
pluto应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792