亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluating fish feeding intensity in aquaculture with convolutional neural networks

水产养殖 卷积神经网络 计算机科学 人工神经网络 强度(物理) 光强度 光流 人工智能 养鱼业 渔业 图像(数学) 生物 量子力学 光学 物理
作者
Naomi A. Ubina,Shyi‐Chyi Cheng,Chin-Chun Chang,Hung-Yuan Chen
出处
期刊:Aquacultural Engineering [Elsevier BV]
卷期号:94: 102178-102178 被引量:56
标识
DOI:10.1016/j.aquaeng.2021.102178
摘要

This paper presents a novel method to evaluate fish feeding intensity for aquaculture fish farming. Determining the level of fish appetite helps optimize fish production and design more efficient aquaculture smart feeding systems. Given an aquaculture surveillance video, our goal is to improve fish feeding intensity evaluation by proposing a two-stage approach: an optical flow neural network is first applied to generate optical flow frames, which are then inputted to a 3D convolution neural network (3D CNN) for fish feeding intensity evaluation. Using an aerial drone, we capture RGB water surface images with significant optical flows from an aquaculture site during the fish feeding activity. The captured images are inputs to our deep optical flow neural network, consisting of the leading neural network layers for video interpolation and the last layer for optical flow regression. Our optical flow detection model calculates the displacement vector of each pixel across two consecutive frames. To construct the training dataset of our CNNs and verify the effectiveness of our proposed approach, we manually annotated the level of fish feeding intensity for each training image frame. In this paper, the fish feeding intensity is categorized into four, i.e., ‘none,’ ‘weak,’ ‘medium’ and ‘strong.’ We compared our method with other state-of-the-art fish feeding intensity evaluations. Our proposed method reached up to 95 % accuracy, which outperforms the existing systems that use CNNs to evaluate the fish feeding intensity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
1秒前
10秒前
施含莲发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
41秒前
量子星尘发布了新的文献求助10
51秒前
优美的冰巧完成签到 ,获得积分10
59秒前
hairgod发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
顺利的小蚂蚁完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Magali发布了新的文献求助10
2分钟前
blenx发布了新的文献求助10
2分钟前
2分钟前
完美世界应助竹子采纳,获得10
3分钟前
3分钟前
老石完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
hairgod完成签到,获得积分10
3分钟前
竹子发布了新的文献求助10
3分钟前
gszy1975完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
烟花应助望远Arena采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
望远Arena发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660994
求助须知:如何正确求助?哪些是违规求助? 3222200
关于积分的说明 9743994
捐赠科研通 2931798
什么是DOI,文献DOI怎么找? 1605221
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503