Vision-Based Framework for Intelligent Monitoring of Hardhat Wearing on Construction Sites

精确性和召回率 计算机科学 背景减法 分类器(UML) 人工智能 支持向量机 运动检测 目标检测 计算机视觉 运动(物理) 模式识别(心理学) 像素
作者
Bahaa Eddine Mneymneh,Mohamad Abbas,Hiam Khoury
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:33 (2) 被引量:114
标识
DOI:10.1061/(asce)cp.1943-5487.0000813
摘要

The construction industry is still considered among the riskiest industries in the world because workers are continuously exposed to injury from falls, slips, or trips or being struck by falling objects. Hence, safety programs have been according great emphasis on enforcing proper use of personal protective equipment (PPE) by deploying safety officers on construction sites. However, the current practice of supervising large construction areas is still manual, tedious, and ineffective. Therefore, this study aims at creating an integrated framework that can automatically and efficiently detect any noncompliance with safety rules and regulations, in particular a failure to wear a hardhat, using computer vision techniques applied on videos captured from construction sites. This is mainly achieved by (1) isolating mobile workers or construction personnel from the captured scene by means of a novel motion detection algorithm and a human classifier and (2) detecting the hardhat in the identified region of interest using an object detection tool coupled with a color-based image classification one. Several experiments were conducted and results highlighted that the proposed framework proved accurate, fast, and robust under different conditions and identified hardhats with high precision and recall. More specifically, the newly developed motion detection algorithm showed an improved accuracy compared to common background subtraction methods; the human classifier performed well and was able to identify several human postures, unlike support vector machine classifiers; and the hardhat detection algorithm achieved high precision and recall simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
AA发布了新的文献求助10
1秒前
传奇3应助GYH采纳,获得10
1秒前
科研小白发布了新的文献求助10
1秒前
zenabia发布了新的文献求助20
1秒前
今后应助陈123采纳,获得10
2秒前
好旺完成签到,获得积分10
3秒前
3秒前
小二郎应助半凡采纳,获得10
3秒前
Coral完成签到,获得积分10
3秒前
李健的粉丝团团长应助lhx采纳,获得10
4秒前
独特平灵发布了新的文献求助10
4秒前
4秒前
4秒前
艾小晞发布了新的文献求助10
4秒前
Ava应助五五五采纳,获得10
4秒前
orixero应助小毛线采纳,获得10
4秒前
浮游应助再煎熬采纳,获得10
5秒前
5秒前
5秒前
5秒前
samuel发布了新的文献求助10
5秒前
毕长富完成签到,获得积分10
6秒前
6秒前
科研通AI6应助StarSilverSaint采纳,获得30
6秒前
6秒前
酷波er应助贪玩嘉懿采纳,获得10
6秒前
迷走姑娘完成签到,获得积分10
6秒前
科研通AI6应助朱志伟采纳,获得10
6秒前
无辜凡完成签到,获得积分20
6秒前
路过蜻蜓发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
luhui发布了新的文献求助10
8秒前
8秒前
8秒前
852应助xh采纳,获得10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940647
求助须知:如何正确求助?哪些是违规求助? 4206748
关于积分的说明 13075495
捐赠科研通 3985361
什么是DOI,文献DOI怎么找? 2182177
邀请新用户注册赠送积分活动 1197793
关于科研通互助平台的介绍 1110088