亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Vision-Based Framework for Intelligent Monitoring of Hardhat Wearing on Construction Sites

精确性和召回率 计算机科学 背景减法 分类器(UML) 人工智能 支持向量机 运动检测 目标检测 计算机视觉 运动(物理) 模式识别(心理学) 像素
作者
Bahaa Eddine Mneymneh,Mohamad Abbas,Hiam Khoury
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:33 (2) 被引量:114
标识
DOI:10.1061/(asce)cp.1943-5487.0000813
摘要

The construction industry is still considered among the riskiest industries in the world because workers are continuously exposed to injury from falls, slips, or trips or being struck by falling objects. Hence, safety programs have been according great emphasis on enforcing proper use of personal protective equipment (PPE) by deploying safety officers on construction sites. However, the current practice of supervising large construction areas is still manual, tedious, and ineffective. Therefore, this study aims at creating an integrated framework that can automatically and efficiently detect any noncompliance with safety rules and regulations, in particular a failure to wear a hardhat, using computer vision techniques applied on videos captured from construction sites. This is mainly achieved by (1) isolating mobile workers or construction personnel from the captured scene by means of a novel motion detection algorithm and a human classifier and (2) detecting the hardhat in the identified region of interest using an object detection tool coupled with a color-based image classification one. Several experiments were conducted and results highlighted that the proposed framework proved accurate, fast, and robust under different conditions and identified hardhats with high precision and recall. More specifically, the newly developed motion detection algorithm showed an improved accuracy compared to common background subtraction methods; the human classifier performed well and was able to identify several human postures, unlike support vector machine classifiers; and the hardhat detection algorithm achieved high precision and recall simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ClarkClarkson完成签到,获得积分10
5秒前
满意人英完成签到,获得积分10
5秒前
默默善愁发布了新的文献求助30
6秒前
yan完成签到,获得积分10
9秒前
10秒前
乐乐应助yan采纳,获得10
18秒前
21秒前
35秒前
Criminology34举报瞿寒求助涉嫌违规
50秒前
59秒前
1分钟前
1分钟前
1分钟前
手可摘星陈同学完成签到 ,获得积分10
1分钟前
怕黑的映真完成签到,获得积分10
1分钟前
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
yan发布了新的文献求助10
1分钟前
1分钟前
陈子宇完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
默默善愁发布了新的文献求助30
2分钟前
2分钟前
2分钟前
畅畅发布了新的文献求助10
2分钟前
畅畅完成签到 ,获得积分10
2分钟前
ww发布了新的文献求助10
2分钟前
Criminology34应助默默善愁采纳,获得10
2分钟前
荼白应助ww采纳,获得10
2分钟前
斯文败类应助null采纳,获得80
2分钟前
3分钟前
Criminology34举报默默诗筠求助涉嫌违规
3分钟前
yan关注了科研通微信公众号
3分钟前
桐桐应助伊萨卡采纳,获得10
3分钟前
大胆的碧菡完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413236
求助须知:如何正确求助?哪些是违规求助? 4530397
关于积分的说明 14122909
捐赠科研通 4445358
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408692