清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Vision-Based Framework for Intelligent Monitoring of Hardhat Wearing on Construction Sites

精确性和召回率 计算机科学 背景减法 分类器(UML) 人工智能 支持向量机 运动检测 目标检测 计算机视觉 运动(物理) 模式识别(心理学) 像素
作者
Bahaa Eddine Mneymneh,Mohamad Abbas,Hiam Khoury
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:33 (2) 被引量:114
标识
DOI:10.1061/(asce)cp.1943-5487.0000813
摘要

The construction industry is still considered among the riskiest industries in the world because workers are continuously exposed to injury from falls, slips, or trips or being struck by falling objects. Hence, safety programs have been according great emphasis on enforcing proper use of personal protective equipment (PPE) by deploying safety officers on construction sites. However, the current practice of supervising large construction areas is still manual, tedious, and ineffective. Therefore, this study aims at creating an integrated framework that can automatically and efficiently detect any noncompliance with safety rules and regulations, in particular a failure to wear a hardhat, using computer vision techniques applied on videos captured from construction sites. This is mainly achieved by (1) isolating mobile workers or construction personnel from the captured scene by means of a novel motion detection algorithm and a human classifier and (2) detecting the hardhat in the identified region of interest using an object detection tool coupled with a color-based image classification one. Several experiments were conducted and results highlighted that the proposed framework proved accurate, fast, and robust under different conditions and identified hardhats with high precision and recall. More specifically, the newly developed motion detection algorithm showed an improved accuracy compared to common background subtraction methods; the human classifier performed well and was able to identify several human postures, unlike support vector machine classifiers; and the hardhat detection algorithm achieved high precision and recall simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助刘述采纳,获得10
3秒前
11秒前
刘述完成签到,获得积分10
13秒前
刘述发布了新的文献求助10
16秒前
我是笨蛋完成签到 ,获得积分10
18秒前
20秒前
阿泽发布了新的文献求助30
26秒前
李爱国应助科研通管家采纳,获得10
40秒前
婉莹完成签到 ,获得积分0
56秒前
yi完成签到,获得积分10
1分钟前
阜睿完成签到 ,获得积分0
1分钟前
负责惊蛰完成签到 ,获得积分10
2分钟前
十八完成签到 ,获得积分10
3分钟前
桦奕兮完成签到 ,获得积分10
3分钟前
鲤鱼山人完成签到 ,获得积分10
3分钟前
千里草完成签到,获得积分10
3分钟前
eric888应助Kevin采纳,获得30
3分钟前
阳光的丹雪完成签到,获得积分10
4分钟前
万能图书馆应助xhaocheng采纳,获得10
5分钟前
5分钟前
xhaocheng发布了新的文献求助10
5分钟前
nicholasgxz完成签到 ,获得积分20
5分钟前
xhaocheng完成签到,获得积分10
5分钟前
小羊完成签到 ,获得积分10
6分钟前
Kevin完成签到,获得积分10
7分钟前
7分钟前
7分钟前
vantie发布了新的文献求助10
7分钟前
Ava应助Omni采纳,获得10
9分钟前
熊猫完成签到 ,获得积分10
10分钟前
11分钟前
Omni发布了新的文献求助10
11分钟前
研友_nxw2xL完成签到,获得积分10
12分钟前
muriel完成签到,获得积分0
12分钟前
如歌完成签到,获得积分10
12分钟前
菠萝包完成签到 ,获得积分10
13分钟前
智者雨人完成签到 ,获得积分10
13分钟前
欢呼亦绿完成签到,获得积分10
14分钟前
kiterunner完成签到,获得积分10
14分钟前
gexzygg应助科研通管家采纳,获得10
14分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565106
求助须知:如何正确求助?哪些是违规求助? 4649926
关于积分的说明 14689340
捐赠科研通 4591797
什么是DOI,文献DOI怎么找? 2519370
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463084