Vision-Based Framework for Intelligent Monitoring of Hardhat Wearing on Construction Sites

精确性和召回率 计算机科学 背景减法 分类器(UML) 人工智能 支持向量机 运动检测 目标检测 计算机视觉 运动(物理) 模式识别(心理学) 像素
作者
Bahaa Eddine Mneymneh,Mohamad Abbas,Hiam Khoury
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:33 (2) 被引量:114
标识
DOI:10.1061/(asce)cp.1943-5487.0000813
摘要

The construction industry is still considered among the riskiest industries in the world because workers are continuously exposed to injury from falls, slips, or trips or being struck by falling objects. Hence, safety programs have been according great emphasis on enforcing proper use of personal protective equipment (PPE) by deploying safety officers on construction sites. However, the current practice of supervising large construction areas is still manual, tedious, and ineffective. Therefore, this study aims at creating an integrated framework that can automatically and efficiently detect any noncompliance with safety rules and regulations, in particular a failure to wear a hardhat, using computer vision techniques applied on videos captured from construction sites. This is mainly achieved by (1) isolating mobile workers or construction personnel from the captured scene by means of a novel motion detection algorithm and a human classifier and (2) detecting the hardhat in the identified region of interest using an object detection tool coupled with a color-based image classification one. Several experiments were conducted and results highlighted that the proposed framework proved accurate, fast, and robust under different conditions and identified hardhats with high precision and recall. More specifically, the newly developed motion detection algorithm showed an improved accuracy compared to common background subtraction methods; the human classifier performed well and was able to identify several human postures, unlike support vector machine classifiers; and the hardhat detection algorithm achieved high precision and recall simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚睡醒发布了新的文献求助10
1秒前
3秒前
3秒前
qq799644972发布了新的文献求助30
4秒前
BHX完成签到,获得积分10
4秒前
愉快的凡发布了新的文献求助10
4秒前
lulala发布了新的文献求助10
5秒前
木木发布了新的文献求助10
5秒前
lightman完成签到,获得积分10
5秒前
Hello应助时尚的冰夏采纳,获得10
5秒前
7秒前
7秒前
yyryyrr发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
BowieHuang应助YK采纳,获得10
9秒前
海盐气泡水完成签到 ,获得积分10
9秒前
10秒前
英姑应助oopp采纳,获得30
11秒前
11秒前
11秒前
WELL123完成签到,获得积分20
11秒前
12秒前
刁刁发布了新的文献求助10
12秒前
14秒前
111关注了科研通微信公众号
16秒前
kiki发布了新的文献求助10
16秒前
16秒前
16秒前
WL完成签到,获得积分10
16秒前
17秒前
Luckydoger完成签到,获得积分10
17秒前
沉静的冬灵完成签到,获得积分20
17秒前
划水小羊发布了新的文献求助10
17秒前
科研通AI6应助ssy采纳,获得10
19秒前
lulala完成签到,获得积分10
19秒前
LK发布了新的文献求助10
20秒前
年糕发布了新的文献求助10
22秒前
搜集达人应助musicyy222采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533498
求助须知:如何正确求助?哪些是违规求助? 4621711
关于积分的说明 14580035
捐赠科研通 4561794
什么是DOI,文献DOI怎么找? 2499622
邀请新用户注册赠送积分活动 1479350
关于科研通互助平台的介绍 1450588