Vision-Based Framework for Intelligent Monitoring of Hardhat Wearing on Construction Sites

精确性和召回率 计算机科学 背景减法 分类器(UML) 人工智能 支持向量机 运动检测 目标检测 计算机视觉 运动(物理) 模式识别(心理学) 像素
作者
Bahaa Eddine Mneymneh,Mohamad Abbas,Hiam Khoury
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:33 (2) 被引量:114
标识
DOI:10.1061/(asce)cp.1943-5487.0000813
摘要

The construction industry is still considered among the riskiest industries in the world because workers are continuously exposed to injury from falls, slips, or trips or being struck by falling objects. Hence, safety programs have been according great emphasis on enforcing proper use of personal protective equipment (PPE) by deploying safety officers on construction sites. However, the current practice of supervising large construction areas is still manual, tedious, and ineffective. Therefore, this study aims at creating an integrated framework that can automatically and efficiently detect any noncompliance with safety rules and regulations, in particular a failure to wear a hardhat, using computer vision techniques applied on videos captured from construction sites. This is mainly achieved by (1) isolating mobile workers or construction personnel from the captured scene by means of a novel motion detection algorithm and a human classifier and (2) detecting the hardhat in the identified region of interest using an object detection tool coupled with a color-based image classification one. Several experiments were conducted and results highlighted that the proposed framework proved accurate, fast, and robust under different conditions and identified hardhats with high precision and recall. More specifically, the newly developed motion detection algorithm showed an improved accuracy compared to common background subtraction methods; the human classifier performed well and was able to identify several human postures, unlike support vector machine classifiers; and the hardhat detection algorithm achieved high precision and recall simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈嘟嘟发布了新的文献求助10
刚刚
思源应助团子采纳,获得10
1秒前
shenglongmax发布了新的文献求助10
1秒前
卡列林发布了新的文献求助10
2秒前
朱华彪发布了新的文献求助10
2秒前
babybluebabe发布了新的文献求助10
3秒前
3秒前
小星云完成签到,获得积分20
3秒前
Kervaff发布了新的文献求助50
5秒前
小姚在忙完成签到,获得积分10
8秒前
SciGPT应助王冠军采纳,获得10
10秒前
小杜完成签到,获得积分10
11秒前
11秒前
14秒前
yar应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
yar应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
张益萌应助科研通管家采纳,获得30
15秒前
15秒前
yar应助科研通管家采纳,获得10
15秒前
CodeCraft应助霸气的梦露采纳,获得10
16秒前
蔓蔓完成签到 ,获得积分10
16秒前
shenglongmax完成签到,获得积分10
17秒前
李阳阳完成签到,获得积分10
17秒前
迷你的井完成签到,获得积分10
21秒前
SXR完成签到,获得积分10
21秒前
22秒前
23秒前
飞快的孱完成签到,获得积分10
24秒前
小young完成签到 ,获得积分10
25秒前
26秒前
27秒前
27秒前
29秒前
babybluebabe发布了新的文献求助10
30秒前
dong发布了新的文献求助10
32秒前
ZIS完成签到,获得积分10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304346
求助须知:如何正确求助?哪些是违规求助? 2938329
关于积分的说明 8488322
捐赠科研通 2612813
什么是DOI,文献DOI怎么找? 1426885
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647374