Vision-Based Framework for Intelligent Monitoring of Hardhat Wearing on Construction Sites

精确性和召回率 计算机科学 背景减法 分类器(UML) 人工智能 支持向量机 运动检测 目标检测 计算机视觉 运动(物理) 模式识别(心理学) 像素
作者
Bahaa Eddine Mneymneh,Mohamad Abbas,Hiam Khoury
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:33 (2) 被引量:114
标识
DOI:10.1061/(asce)cp.1943-5487.0000813
摘要

The construction industry is still considered among the riskiest industries in the world because workers are continuously exposed to injury from falls, slips, or trips or being struck by falling objects. Hence, safety programs have been according great emphasis on enforcing proper use of personal protective equipment (PPE) by deploying safety officers on construction sites. However, the current practice of supervising large construction areas is still manual, tedious, and ineffective. Therefore, this study aims at creating an integrated framework that can automatically and efficiently detect any noncompliance with safety rules and regulations, in particular a failure to wear a hardhat, using computer vision techniques applied on videos captured from construction sites. This is mainly achieved by (1) isolating mobile workers or construction personnel from the captured scene by means of a novel motion detection algorithm and a human classifier and (2) detecting the hardhat in the identified region of interest using an object detection tool coupled with a color-based image classification one. Several experiments were conducted and results highlighted that the proposed framework proved accurate, fast, and robust under different conditions and identified hardhats with high precision and recall. More specifically, the newly developed motion detection algorithm showed an improved accuracy compared to common background subtraction methods; the human classifier performed well and was able to identify several human postures, unlike support vector machine classifiers; and the hardhat detection algorithm achieved high precision and recall simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tristone完成签到,获得积分10
刚刚
1秒前
脑洞疼应助王晓雪采纳,获得10
2秒前
3秒前
4秒前
shisong发布了新的文献求助10
5秒前
华仔应助雷家采纳,获得10
5秒前
7秒前
7秒前
lshao完成签到 ,获得积分10
7秒前
8秒前
赵博宇发布了新的文献求助10
9秒前
9秒前
10秒前
十三发布了新的文献求助10
11秒前
开心牛油果完成签到,获得积分10
12秒前
13秒前
pharma发布了新的文献求助10
16秒前
shisong完成签到,获得积分10
17秒前
王晓雪发布了新的文献求助10
17秒前
等等发布了新的文献求助10
17秒前
科研通AI5应助欧阳正义采纳,获得10
19秒前
20秒前
汉堡包应助十三采纳,获得10
21秒前
lal关闭了lal文献求助
23秒前
23秒前
26秒前
111完成签到 ,获得积分10
27秒前
qq158014169完成签到 ,获得积分10
28秒前
雷家发布了新的文献求助10
28秒前
pharma完成签到,获得积分10
28秒前
29秒前
桐桐应助moumou采纳,获得10
29秒前
szj发布了新的文献求助10
29秒前
领导范儿应助逢考必过采纳,获得10
31秒前
31秒前
32秒前
33秒前
隐形曼青应助英勇的凌蝶采纳,获得10
33秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498