Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency

材料科学 凝聚态物理 热导率 软化 热电材料 热电效应 格子(音乐) 热的 复合材料 热力学 物理 声学
作者
Riley Hanus,Matthias T. Agne,Alexander J. E. Rettie,Zhiwei Chen,Gangjian Tan,Duck Young Chung,Mercouri G. Kanatzidis,Yanzhong Pei,Peter W. Voorhees,G. Jeffrey Snyder
出处
期刊:Advanced Materials [Wiley]
卷期号:31 (21) 被引量:220
标识
DOI:10.1002/adma.201900108
摘要

The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high-efficiency Na-doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhaoyue完成签到 ,获得积分10
刚刚
1秒前
flyflyfly发布了新的文献求助10
1秒前
隐形曼青应助迎风映雪采纳,获得10
1秒前
2秒前
任寒松发布了新的文献求助20
2秒前
量子星尘发布了新的文献求助10
2秒前
柚米完成签到,获得积分10
2秒前
ZeKaWa应助11采纳,获得10
3秒前
科研通AI6应助魏阳宇采纳,获得10
3秒前
3秒前
4秒前
4秒前
SciGPT应助晰默采纳,获得10
5秒前
徐5V发布了新的文献求助10
5秒前
jun完成签到 ,获得积分10
5秒前
耍酷蝴蝶完成签到,获得积分10
5秒前
6秒前
王晓完成签到,获得积分10
6秒前
6秒前
6秒前
风吹麦田应助qww采纳,获得20
6秒前
7秒前
搞怪擎完成签到,获得积分10
8秒前
李健应助小七采纳,获得10
8秒前
8秒前
8秒前
8秒前
哈哈完成签到,获得积分10
8秒前
打打应助丰收喵采纳,获得10
9秒前
123bella123发布了新的文献求助10
9秒前
旋风大普忒头战神完成签到 ,获得积分10
9秒前
9秒前
9秒前
lucky发布了新的文献求助30
10秒前
10秒前
10秒前
Cast_Lappland发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721