函数微积分
数学
全纯函数演算
元组
希尔伯特空间
算符理论
牙石(牙科)
域代数上的
Clifford分析
操作员(生物学)
光谱(功能分析)
狄拉克算符
四元数表示
纯数学
离散数学
巴拿赫空间
不可约表示
有限秩算子
物理
基因
抑制因子
真实再现
转录因子
医学
化学
牙科
量子力学
生物化学
作者
Daniel Alpay,Fabrizio Colombo,Tao Qian,Irene Sabadini
标识
DOI:10.1016/j.jfa.2016.06.009
摘要
In this paper we extend the H∞ functional calculus to quaternionic operators and to n-tuples of noncommuting operators using the theory of slice hyperholomorphic functions and the associated functional calculus, called S-functional calculus. The S-functional calculus has two versions: one for quaternionic-valued functions and one for Clifford algebra-valued functions and can be considered the Riesz–Dunford functional calculus based on slice hyperholomorphicity, because it shares with it the most important properties. The S-functional calculus is based on the notion of S-spectrum which, in the case of quaternionic normal operators on a Hilbert space, is also the notion of spectrum that appears in the quaternionic spectral theorem. The main purpose of this paper is to construct the H∞ functional calculus based on the notion of S-spectrum for both quaternionic operators and for n-tuples of noncommuting operators. We remark that the H∞ functional calculus for (n+1)-tuples of operators applies, in particular, to the Dirac operator.
科研通智能强力驱动
Strongly Powered by AbleSci AI