亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based classification of posttraumatic stress disorder and depression following trauma utilizing visual and auditory markers of arousal and mood

重性抑郁障碍 召回 心理学 心情 萧条(经济学) 急性应激障碍 听力学 精神科 医学 创伤后应激 认知心理学 宏观经济学 经济
作者
Katharina Schultebraucks,Vijay Yadav,Arieh Y. Shalev,George A. Bonanno,Isaac R. Galatzer‐Levy
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:52 (5): 957-967 被引量:61
标识
DOI:10.1017/s0033291720002718
摘要

Visual and auditory signs of patient functioning have long been used for clinical diagnosis, treatment selection, and prognosis. Direct measurement and quantification of these signals can aim to improve the consistency, sensitivity, and scalability of clinical assessment. Currently, we investigate if machine learning-based computer vision (CV), semantic, and acoustic analysis can capture clinical features from free speech responses to a brief interview 1 month post-trauma that accurately classify major depressive disorder (MDD) and posttraumatic stress disorder (PTSD).N = 81 patients admitted to an emergency department (ED) of a Level-1 Trauma Unit following a life-threatening traumatic event participated in an open-ended qualitative interview with a para-professional about their experience 1 month following admission. A deep neural network was utilized to extract facial features of emotion and their intensity, movement parameters, speech prosody, and natural language content. These features were utilized as inputs to classify PTSD and MDD cross-sectionally.Both video- and audio-based markers contributed to good discriminatory classification accuracy. The algorithm discriminates PTSD status at 1 month after ED admission with an AUC of 0.90 (weighted average precision = 0.83, recall = 0.84, and f1-score = 0.83) as well as depression status at 1 month after ED admission with an AUC of 0.86 (weighted average precision = 0.83, recall = 0.82, and f1-score = 0.82).Direct clinical observation during post-trauma free speech using deep learning identifies digital markers that can be utilized to classify MDD and PTSD status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
HRZ完成签到 ,获得积分10
3秒前
8秒前
13秒前
15秒前
20秒前
啊呜0u0完成签到,获得积分10
27秒前
豆乳米麻薯完成签到 ,获得积分10
27秒前
28秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
32秒前
旅行完成签到 ,获得积分10
33秒前
Tendency完成签到 ,获得积分10
34秒前
清森完成签到 ,获得积分10
41秒前
42秒前
Lee6655完成签到,获得积分10
42秒前
会发芽完成签到 ,获得积分10
46秒前
Dan完成签到 ,获得积分10
53秒前
57秒前
58秒前
58秒前
1分钟前
wf发布了新的文献求助10
1分钟前
1分钟前
mr_beard完成签到 ,获得积分10
1分钟前
1分钟前
Owen应助你的背包采纳,获得10
1分钟前
1分钟前
言午完成签到,获得积分10
1分钟前
凤里完成签到 ,获得积分10
1分钟前
修水县1个科研人完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
你的背包发布了新的文献求助10
1分钟前
姜姜姜完成签到,获得积分10
1分钟前
1分钟前
你的背包完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455618
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022875
捐赠科研通 2739402
什么是DOI,文献DOI怎么找? 1502731
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387