CNN-LSTM deep learning architecture for computer vision-based modal frequency detection

计算机科学 人工智能 建筑 计算机视觉 情态动词 深度学习 语音识别 艺术 视觉艺术 化学 高分子化学
作者
Ruoyu Yang,Shubhendu Singh,Mostafa Tavakkoli Anbarani,Nikta Amiri,Yongchao Yang,M. Amin Karami,Rahul Rai
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:144: 106885-106885 被引量:169
标识
DOI:10.1016/j.ymssp.2020.106885
摘要

The conventional modal analysis involves physically-attached wired or wireless sensors for vibration measurement of structures. However, this method has certain disadvantages, owing to the sensor’s weight and its low spatial resolution, which limits the analysis precision or the high cost of optical vibration sensors. Besides, the sensor installation and calibration in itself is a time consuming and labor-intensive process. Non-contact computer vision-based vibration measurement techniques can address the shortcomings mentioned above. In this paper, we introduce CNN-LSTM (Convolutional Neural Network, Long Short-Term Memory) deep learning based approach that can serve as a backbone for computer vision-based vibration measurement techniques. The key idea is to use each pixel of an image taken from an off the shelf camera, encapsulating the Spatio-temporal information, like a sensor to capture the modal frequencies of a vibrating structure. Non-contact “pixel-sensor” does not alter the system’s dynamics and is relatively low-cost, agile, and provides measurements with very high spatial resolution. Our computer vision-based deep learning model takes the video of a vibrating structure as input and outputs the fundamental modal frequencies. We demonstrate, using reliable empirical results, that “pixel-sensor” is more efficient, autonomous, and accurate. Robustness of the deep learning model has been put to the test by using specimens of a variety of materials, and varying dimensions and results have shown high levels of sensing accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖炒栗子完成签到,获得积分10
1秒前
现代期待完成签到,获得积分10
1秒前
小黎完成签到,获得积分10
2秒前
呼呼呼完成签到,获得积分10
2秒前
无花果应助晴云采纳,获得10
2秒前
寸草的晖完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
小燕子发布了新的文献求助10
5秒前
6秒前
顺顺完成签到,获得积分10
7秒前
jiachun完成签到,获得积分10
7秒前
jiaolulu发布了新的文献求助10
7秒前
小王发布了新的文献求助10
8秒前
queen814完成签到,获得积分10
8秒前
简单发布了新的文献求助10
9秒前
一只呆果蝇完成签到,获得积分10
9秒前
Eternity完成签到,获得积分10
10秒前
研友_VZG7GZ应助落后从阳采纳,获得10
10秒前
乐观寻绿完成签到,获得积分10
11秒前
Hover完成签到,获得积分0
11秒前
莫晓岚完成签到,获得积分10
11秒前
123完成签到 ,获得积分10
12秒前
所所应助JSY采纳,获得30
12秒前
默默的立辉完成签到,获得积分10
12秒前
Yh完成签到,获得积分10
12秒前
引子完成签到,获得积分10
14秒前
机智的阿振完成签到,获得积分10
15秒前
KatzeBaliey完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
yar应助大饼采纳,获得10
18秒前
mammer应助一朵云采纳,获得20
18秒前
18秒前
Jason完成签到,获得积分10
19秒前
害羞凤灵完成签到,获得积分10
19秒前
芳芳完成签到,获得积分10
20秒前
风起枫落完成签到 ,获得积分10
20秒前
xkhxh完成签到 ,获得积分10
21秒前
zzq778发布了新的文献求助10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029