CNN-LSTM deep learning architecture for computer vision-based modal frequency detection

计算机科学 人工智能 建筑 计算机视觉 情态动词 深度学习 语音识别 艺术 视觉艺术 化学 高分子化学
作者
Ruoyu Yang,Shubhendu Singh,Mostafa Tavakkoli Anbarani,Nikta Amiri,Yongchao Yang,M. Amin Karami,Rahul Rai
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:144: 106885-106885 被引量:169
标识
DOI:10.1016/j.ymssp.2020.106885
摘要

The conventional modal analysis involves physically-attached wired or wireless sensors for vibration measurement of structures. However, this method has certain disadvantages, owing to the sensor’s weight and its low spatial resolution, which limits the analysis precision or the high cost of optical vibration sensors. Besides, the sensor installation and calibration in itself is a time consuming and labor-intensive process. Non-contact computer vision-based vibration measurement techniques can address the shortcomings mentioned above. In this paper, we introduce CNN-LSTM (Convolutional Neural Network, Long Short-Term Memory) deep learning based approach that can serve as a backbone for computer vision-based vibration measurement techniques. The key idea is to use each pixel of an image taken from an off the shelf camera, encapsulating the Spatio-temporal information, like a sensor to capture the modal frequencies of a vibrating structure. Non-contact “pixel-sensor” does not alter the system’s dynamics and is relatively low-cost, agile, and provides measurements with very high spatial resolution. Our computer vision-based deep learning model takes the video of a vibrating structure as input and outputs the fundamental modal frequencies. We demonstrate, using reliable empirical results, that “pixel-sensor” is more efficient, autonomous, and accurate. Robustness of the deep learning model has been put to the test by using specimens of a variety of materials, and varying dimensions and results have shown high levels of sensing accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好兆头关注了科研通微信公众号
刚刚
tuanzi233发布了新的文献求助10
1秒前
11di发布了新的文献求助10
1秒前
1秒前
1秒前
彩彻区明发布了新的文献求助10
2秒前
2秒前
开放的明杰完成签到,获得积分10
2秒前
优雅的机器猫应助moqituo采纳,获得10
2秒前
2秒前
youyyuy发布了新的文献求助30
2秒前
li完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
3秒前
yaya发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
魁梧的曼易完成签到,获得积分10
4秒前
乐乐应助暴躁的念之采纳,获得10
4秒前
5秒前
nyddyy完成签到,获得积分10
5秒前
凡凡发布了新的文献求助10
5秒前
Ann完成签到,获得积分10
5秒前
777发布了新的文献求助10
5秒前
Twonej应助lay采纳,获得200
6秒前
黎L完成签到 ,获得积分10
6秒前
Joan_Joestar完成签到,获得积分10
6秒前
权_888发布了新的文献求助10
6秒前
6秒前
热心幻天发布了新的文献求助10
7秒前
orixero应助Cyanide采纳,获得10
7秒前
7秒前
迪迦发布了新的文献求助10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
刘亚玲完成签到 ,获得积分10
9秒前
zgrmws应助科研通管家采纳,获得10
9秒前
体贴乐巧应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659704
求助须知:如何正确求助?哪些是违规求助? 4829909
关于积分的说明 15088114
捐赠科研通 4818433
什么是DOI,文献DOI怎么找? 2578625
邀请新用户注册赠送积分活动 1533233
关于科研通互助平台的介绍 1491959