CNN-LSTM deep learning architecture for computer vision-based modal frequency detection

计算机科学 人工智能 建筑 计算机视觉 情态动词 深度学习 语音识别 艺术 视觉艺术 化学 高分子化学
作者
Ruoyu Yang,Shubhendu Singh,Mostafa Tavakkoli Anbarani,Nikta Amiri,Yongchao Yang,M. Amin Karami,Rahul Rai
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:144: 106885-106885 被引量:167
标识
DOI:10.1016/j.ymssp.2020.106885
摘要

The conventional modal analysis involves physically-attached wired or wireless sensors for vibration measurement of structures. However, this method has certain disadvantages, owing to the sensor’s weight and its low spatial resolution, which limits the analysis precision or the high cost of optical vibration sensors. Besides, the sensor installation and calibration in itself is a time consuming and labor-intensive process. Non-contact computer vision-based vibration measurement techniques can address the shortcomings mentioned above. In this paper, we introduce CNN-LSTM (Convolutional Neural Network, Long Short-Term Memory) deep learning based approach that can serve as a backbone for computer vision-based vibration measurement techniques. The key idea is to use each pixel of an image taken from an off the shelf camera, encapsulating the Spatio-temporal information, like a sensor to capture the modal frequencies of a vibrating structure. Non-contact “pixel-sensor” does not alter the system’s dynamics and is relatively low-cost, agile, and provides measurements with very high spatial resolution. Our computer vision-based deep learning model takes the video of a vibrating structure as input and outputs the fundamental modal frequencies. We demonstrate, using reliable empirical results, that “pixel-sensor” is more efficient, autonomous, and accurate. Robustness of the deep learning model has been put to the test by using specimens of a variety of materials, and varying dimensions and results have shown high levels of sensing accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
3秒前
4秒前
7秒前
快乐滑板应助如意闭月采纳,获得10
7秒前
li发布了新的文献求助10
8秒前
gogozoco发布了新的文献求助10
9秒前
Cu_wx完成签到,获得积分10
9秒前
9秒前
CC发布了新的文献求助20
9秒前
Lucky发布了新的文献求助10
10秒前
11秒前
墨白发布了新的文献求助10
12秒前
田様应助gogozoco采纳,获得10
12秒前
Lucas应助gogozoco采纳,获得30
12秒前
14秒前
迷人小白菜完成签到 ,获得积分10
14秒前
16秒前
17秒前
18秒前
科研通AI2S应助叶某还得学采纳,获得10
18秒前
Hxw应助小叶采纳,获得10
19秒前
Maestro_S应助小叶采纳,获得10
19秒前
Hello应助小叶采纳,获得10
19秒前
gogozoco发布了新的文献求助30
19秒前
700w完成签到 ,获得积分0
21秒前
杨纨成发布了新的文献求助20
21秒前
shaoshao86完成签到,获得积分10
22秒前
佐佐木希完成签到,获得积分10
27秒前
共享精神应助mmknnk采纳,获得10
27秒前
Lucky完成签到,获得积分10
27秒前
Yiy关闭了Yiy文献求助
30秒前
墨白完成签到,获得积分10
31秒前
佐佐木希发布了新的文献求助10
32秒前
32秒前
doudou关注了科研通微信公众号
34秒前
月下西楼完成签到,获得积分10
34秒前
大模型应助莉亚采纳,获得10
36秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416168
求助须知:如何正确求助?哪些是违规求助? 3017855
关于积分的说明 8882900
捐赠科研通 2705481
什么是DOI,文献DOI怎么找? 1483611
科研通“疑难数据库(出版商)”最低求助积分说明 685769
邀请新用户注册赠送积分活动 680853