Three-Dimensional Convolutional Neural Networks and a Cross-Docked Data Set for Structure-Based Drug Design

计算机科学 试验装置 卷积神经网络 人工智能 数据集 一般化 机器学习 集合(抽象数据类型) 训练集 数据挖掘 人工神经网络 数学 数学分析 程序设计语言
作者
Paul Francoeur,Takuya Masuda,Jocelyn Sunseri,Andrew Jia,Richard B. Iovanisci,I. M. Snyder
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (9): 4200-4215 被引量:86
标识
DOI:10.1021/acs.jcim.0c00411
摘要

One of the main challenges in drug discovery is predicting protein–ligand binding affinity. Recently, machine learning approaches have made substantial progress on this task. However, current methods of model evaluation are overly optimistic in measuring generalization to new targets, and there does not exist a standard data set of sufficient size to compare performance between models. We present a new data set for structure-based machine learning, the CrossDocked2020 set, with 22.5 million poses of ligands docked into multiple similar binding pockets across the Protein Data Bank, and perform a comprehensive evaluation of grid-based convolutional neural network (CNN) models on this data set. We also demonstrate how the partitioning of the training data and test data can impact the results of models trained with the PDBbind data set, how performance improves by adding more lower-quality training data, and how training with docked poses imparts pose sensitivity to the predicted affinity of a complex. Our best performing model, an ensemble of five densely connected CNNs, achieves a root mean squared error of 1.42 and Pearson R of 0.612 on the affinity prediction task, an AUC of 0.956 at binding pose classification, and a 68.4% accuracy at pose selection on the CrossDocked2020 set. By providing data splits for clustered cross-validation and the raw data for the CrossDocked2020 set, we establish the first standardized data set for training machine learning models to recognize ligands in noncognate target structures while also greatly expanding the number of poses available for training. In order to facilitate community adoption of this data set for benchmarking protein–ligand binding affinity prediction, we provide our models, weights, and the CrossDocked2020 set at https://github.com/gnina/models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观又晴完成签到,获得积分10
1秒前
bkagyin应助小凯采纳,获得10
1秒前
nilu发布了新的文献求助10
1秒前
2秒前
3秒前
着急毕业的干饭人完成签到,获得积分10
3秒前
4秒前
4秒前
我是萨比完成签到,获得积分10
4秒前
江九言完成签到,获得积分10
5秒前
5秒前
SciGPT应助娃哈哈采纳,获得10
7秒前
7秒前
科目三应助Coral.采纳,获得10
8秒前
cici发布了新的文献求助10
8秒前
达芙发布了新的文献求助10
8秒前
英俊的铭应助喜悦秋白采纳,获得10
9秒前
9秒前
曾开心发布了新的文献求助10
10秒前
11秒前
西柚完成签到,获得积分10
11秒前
11秒前
12秒前
去月球数星星完成签到,获得积分20
13秒前
小小莫完成签到 ,获得积分10
13秒前
14秒前
14秒前
Mr杜发布了新的文献求助10
14秒前
Jasper应助Aya采纳,获得10
14秒前
风语发布了新的文献求助30
14秒前
顾矜应助Reeee采纳,获得10
14秒前
快乐的打羽毛球完成签到 ,获得积分10
14秒前
烟花应助lingling采纳,获得30
18秒前
18秒前
18秒前
北城发布了新的文献求助30
19秒前
19秒前
Oli完成签到,获得积分10
20秒前
归尘发布了新的文献求助10
21秒前
sunxs发布了新的文献求助30
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466441
求助须知:如何正确求助?哪些是违规求助? 3059219
关于积分的说明 9065619
捐赠科研通 2749724
什么是DOI,文献DOI怎么找? 1508697
科研通“疑难数据库(出版商)”最低求助积分说明 697013
邀请新用户注册赠送积分活动 696780