Transfer learning with deep manifold regularized auto-encoders

学习迁移 计算机科学 特征学习 人工智能 Softmax函数 自编码 半监督学习 冗余(工程) 机器学习 深度学习 编码器 正规化(语言学) 歧管对齐 模式识别(心理学) 多任务学习 非线性降维 降维 管理 经济 任务(项目管理) 操作系统
作者
Yi Zhu,Xindong Wu,Peipei Li,Yuhong Zhang,Xuegang Hu
出处
期刊:Neurocomputing [Elsevier]
卷期号:369: 145-154 被引量:23
标识
DOI:10.1016/j.neucom.2019.08.078
摘要

The excellent performance of transfer learning has emerged in the past few years. How to find feature representations which minimize the distance between source and target domains is a crucial problem in transfer learning. Recently, deep learning methods have been proposed to learn higher level and robust representations. However, in traditional methods, label information in source domain is not designed to optimize both feature representations and parameters of the learning model. Additionally, the redundancy of data may incur performance degradation on transfer learning. To address these problems, we propose a novel semi-supervised representation deep learning framework for transfer learning. To obtain this framework, manifold regularization is integrated for the parameter optimization, and the label information is encoded using a softmax regression model in auto-encoders. Meanwhile, whitening layer is introduced to reduce the redundancy of data before auto-encoders. Extensive experiments demonstrate the effectiveness of our proposed framework compared to other competing state-of-the-art baseline methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路宇鹏完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
天天快乐应助薛飞采纳,获得10
3秒前
li发布了新的文献求助10
3秒前
3秒前
Return发布了新的文献求助10
4秒前
cjh发布了新的文献求助10
4秒前
4秒前
鲤鱼水桃发布了新的文献求助10
4秒前
友好安白发布了新的文献求助10
6秒前
小马甲应助笑点低雨筠采纳,获得10
7秒前
行走人生发布了新的文献求助30
7秒前
喵喵完成签到 ,获得积分10
7秒前
Dy发布了新的文献求助10
7秒前
小鬼发布了新的文献求助10
8秒前
勤奋的缘郡完成签到,获得积分10
9秒前
994发布了新的文献求助10
9秒前
李健的小迷弟应助ZNX采纳,获得10
9秒前
10秒前
小蘑菇应助jovrtic采纳,获得10
10秒前
饱满以松完成签到 ,获得积分10
10秒前
13秒前
深情安青应助Scarlett采纳,获得10
14秒前
17秒前
小giao吃不饱完成签到,获得积分10
18秒前
18秒前
Lucas应助腼腆的月亮采纳,获得10
18秒前
红火完成签到 ,获得积分10
18秒前
xlnju完成签到,获得积分10
20秒前
123发布了新的文献求助30
21秒前
123发布了新的文献求助10
23秒前
yanzw发布了新的文献求助10
24秒前
jovrtic发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
26秒前
cjh完成签到,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649914
求助须知:如何正确求助?哪些是违规求助? 4779409
关于积分的说明 15050588
捐赠科研通 4808829
什么是DOI,文献DOI怎么找? 2571871
邀请新用户注册赠送积分活动 1528143
关于科研通互助平台的介绍 1486917