2019年冠状病毒病(COVID-19)
大流行
泊松分布
零(语言学)
2019-20冠状病毒爆发
长记忆
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)
自回归模型
泊松回归
数学
应用数学
计量经济学
统计
医学
病毒学
人口学
社会学
波动性(金融)
人口
语言学
哲学
疾病
病理
爆发
传染病(医学专业)
作者
Xiaofei Xu,Yijiong Zhang,Yan Liu,Yuichi Goto,Masanobu Taniguchi,Ying Chen
出处
期刊:Statistica Sinica
[Statistica Sinica (Institute of Statistical Science)]
日期:2023-07-07
标识
DOI:10.5705/ss.202022.0148
摘要
This paper describes the dynamics of daily new cases arising from the Covid-19 pandemic using a long-range dependent model.A new long memory model, LFIGX (Log-linear zero-inflated generalized Poisson integer-valued Fractionally Integrated GARCH process with eXogenous covariates), is proposed to account for count time series data with a long-run dependent effect.It provides a novel unified framework for integer-valued processes with serial and long-range dependence (positive or negative), over-dispersion, zero-inflation, nonlinearity, and exogenous variable effects.We adopt an adaptive Bayesian Markov Chain Monte Carlo (MCMC) sampling scheme for parameter estimation.This new modeling is applied to the daily new confirmed cases of the Covid-19 pandemic in six countries including Japan, Vietnam, Italy, the United Kingdom, Brazil, and the United States.The LFIGX model provides insightful interpretations of the impacts of policy index and temperature and delivers good forecasting performance for the dynamics of the daily new cases in different countries.
科研通智能强力驱动
Strongly Powered by AbleSci AI