Physics-Informed Machine Learning for Data Anomaly Detection, Classification, Localization, and Mitigation: A Review, Challenges, and Path Forward

异常检测 计算机科学 路径(计算) 异常(物理) 人工智能 机器学习 数据挖掘 物理 凝聚态物理 程序设计语言
作者
Mehdi Jabbari Zideh,Paroma Chatterjee,Anurag K. Srivastava
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 4597-4617 被引量:26
标识
DOI:10.1109/access.2023.3347989
摘要

Advancements in digital automation for smart grids have led to the installation of measurement devices like phasor measurement units (PMUs), micro-PMUs (μ-PMUs), and smart meters. However, large amount of data collected by these devices bring several challenges as control room operators need to use this data with models to make confident decisions for reliable and resilient operation of the cyber-power systems. Machine-learning (ML) based tools can provide a reliable interpretation of the deluge of data obtained from the field. For the decision-makers to ensure reliable network operation under all operating conditions, these tools need to identify solutions that are feasible and satisfy the system constraints, while being efficient, trustworthy and interpretable. This resulted in the increasing popularity of physics-informed machine learning (PIML) approaches, as these methods overcome challenges that model-based or data-driven ML methods face in silos. This work aims at the following: a) review existing strategies and techniques for incorporating underlying physical principles of the power grid into different types of ML approaches (supervised/semi-supervised learning, unsupervised learning, and reinforcement learning (RL)); b) explore the existing works on PIML methods for anomaly detection, classification, localization, and mitigation in power transmission and distribution systems, c) discuss improvements in existing methods through consideration of potential challenges while also addressing the limitations to make them suitable for real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助LDDD采纳,获得10
刚刚
zwxzwx发布了新的文献求助10
刚刚
caohuijun完成签到,获得积分10
1秒前
Hezam完成签到,获得积分20
1秒前
科研通AI5应助岳苏佳采纳,获得10
2秒前
彭于彦祖应助无私水卉采纳,获得20
2秒前
2秒前
2秒前
2秒前
SYLH应助你怎么睡得着觉采纳,获得10
2秒前
2秒前
3秒前
小羊咩咩发布了新的文献求助10
3秒前
3秒前
Cheryy发布了新的文献求助10
4秒前
4秒前
哒哒哒完成签到 ,获得积分10
4秒前
英姑应助opq856采纳,获得30
5秒前
脑洞疼应助哈喽小雪采纳,获得10
6秒前
简让发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
osmanthus应助1459采纳,获得10
7秒前
李长流发布了新的文献求助10
7秒前
乐乐应助不知江月待何人采纳,获得10
7秒前
Rachel发布了新的文献求助10
8秒前
酷波er应助shunshun122采纳,获得10
8秒前
ding应助小羊咩咩采纳,获得10
8秒前
xiaiojin发布了新的文献求助10
8秒前
粥粥完成签到,获得积分10
9秒前
Owen应助萍子采纳,获得10
9秒前
酷酷珠完成签到,获得积分10
9秒前
10秒前
天上的鱼完成签到,获得积分10
10秒前
wizard关注了科研通微信公众号
10秒前
桑榆非晚发布了新的文献求助10
10秒前
生椰拿铁完成签到,获得积分10
11秒前
11秒前
andy发布了新的文献求助10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756055
求助须知:如何正确求助?哪些是违规求助? 3299291
关于积分的说明 10109581
捐赠科研通 3013845
什么是DOI,文献DOI怎么找? 1655326
邀请新用户注册赠送积分活动 789704
科研通“疑难数据库(出版商)”最低求助积分说明 753361