Unsupervised Domain Adaptation With Class-Aware Memory Alignment

计算机科学 班级(哲学) 领域(数学分析) 可靠性(半导体) 随机性 人工智能 光学(聚焦) 适应(眼睛) 域适应 机器学习 数学 数学分析 功率(物理) 统计 物理 量子力学 分类器(UML) 光学
作者
Hui Wang,Liangli Zheng,Hanbin Zhao,Shijian Li,Xi Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9930-9942 被引量:2
标识
DOI:10.1109/tnnls.2023.3238063
摘要

Unsupervised domain adaptation (UDA) is to make predictions on unlabeled target domain by learning the knowledge from a label-rich source domain. In practice, existing UDA approaches mainly focus on minimizing the discrepancy between different domains by mini-batch training, where only a few instances are accessible at each iteration. Due to the randomness of sampling, such a batch-level alignment pattern is unstable and may lead to misalignment. To alleviate this risk, we propose class-aware memory alignment (CMA) that models the distributions of the two domains by two auxiliary class-aware memories and performs domain adaptation on these predefined memories. CMA is designed with two distinct characteristics: class-aware memories that create two symmetrical class-aware distributions for different domains and two reliability-based filtering strategies that enhance the reliability of the constructed memory. We further design a unified memory-based loss to jointly improve the transferability and discriminability of features in the memories. State-of-the-art (SOTA) comparisons and careful ablation studies show the effectiveness of our proposed CMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
logic发布了新的文献求助10
1秒前
习习应助生动的雨竹采纳,获得10
1秒前
bo完成签到 ,获得积分10
1秒前
迟大猫应助啵乐乐采纳,获得10
2秒前
安雯完成签到 ,获得积分10
2秒前
HuLL完成签到,获得积分10
2秒前
Yolo完成签到 ,获得积分10
2秒前
难过的慕青完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
5秒前
无花果应助sunzhiyu233采纳,获得10
5秒前
韭黄完成签到,获得积分20
5秒前
6秒前
诚c发布了新的文献求助10
6秒前
自然秋柳完成签到 ,获得积分10
6秒前
我是老大应助经法采纳,获得10
6秒前
默默的皮牙子应助经法采纳,获得10
6秒前
orixero应助经法采纳,获得10
6秒前
小马甲应助经法采纳,获得10
6秒前
柚子成精应助经法采纳,获得10
7秒前
小蘑菇应助经法采纳,获得10
7秒前
深情安青应助经法采纳,获得10
7秒前
李爱国应助经法采纳,获得10
7秒前
共享精神应助经法采纳,获得10
7秒前
yyyyyy完成签到 ,获得积分10
7秒前
LL完成签到,获得积分10
7秒前
ziyiziyi发布了新的文献求助10
8秒前
哈哈哈haha发布了新的文献求助40
8秒前
8秒前
啵乐乐完成签到,获得积分10
9秒前
哈哈完成签到,获得积分20
9秒前
10秒前
logic完成签到,获得积分10
10秒前
岁月轮回发布了新的文献求助10
10秒前
小离发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759