A co-evolutionary algorithm based on sparsity clustering for sparse large-scale multi-objective optimization

计算机科学 聚类分析 双聚类 比例(比率) 进化算法 稀疏逼近 算法 数学优化 人工智能 数据挖掘 模式识别(心理学) 树冠聚类算法 模糊聚类 数学 量子力学 物理
作者
Yajie Zhang,Chengming Wu,Ye Tian,Xingyi Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108194-108194 被引量:3
标识
DOI:10.1016/j.engappai.2024.108194
摘要

Sparse large-scale multi-objective optimization problems (LSMOPs), which are characterized by high dimensional search space and sparse Pareto optimal solutions, have a widespread existence in academic research and practical applications. While the high dimensional decision space poses challenges to multi-objective evolutionary algorithms (MOEAs), the difficulty of solving sparse LSMOPs can be alleviated by utilizing the prior knowledge that the optimal solutions are sparse. In this paper, a co-evolutionary algorithm based on sparsity clustering, namely SCEA, is proposed, where the prior knowledge of sparse optimal solutions is utilized explicitly. At each generation, SCEA first calculates the current optimal sparsity by sparsity clustering. Then, SCEA divides the population into a winner subpopulation and two loser subpopulations. While the winner subpopulation reproduces offspring solutions by conventional genetic operators, the loser subpopulations generate offspring solutions along two competitive directions under the guidance of current optimal sparsity and variable importance. In the experiments, four state-of-the-art MOEAs are selected as the comparative algorithms. Experimental results show that the proposed algorithm is superior to the four competitors on both benchmark problems and practical applications, which include the sparse signal reconstruction problem, the community detection problem, and the instance selection problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊驼完成签到,获得积分10
1秒前
2秒前
2秒前
Elaine完成签到,获得积分10
3秒前
乐乐应助Ricewind采纳,获得10
3秒前
杨默发布了新的文献求助10
3秒前
科研通AI5应助zl采纳,获得10
3秒前
Albert发布了新的文献求助10
4秒前
4秒前
深情安青应助之和采纳,获得10
4秒前
糕糕完成签到 ,获得积分10
5秒前
5秒前
科研通AI5应助张凤采纳,获得10
6秒前
哈哈发布了新的文献求助10
6秒前
zaddy0905发布了新的文献求助30
6秒前
7秒前
8秒前
9秒前
11秒前
杨默完成签到,获得积分10
13秒前
喜悦的鬼神完成签到 ,获得积分10
13秒前
小白发布了新的文献求助10
13秒前
852应助白茶泡泡球采纳,获得10
14秒前
14秒前
fan2发布了新的文献求助10
14秒前
万能图书馆应助Chen272采纳,获得10
15秒前
15秒前
chemhub完成签到,获得积分10
16秒前
16秒前
科研通AI5应助杨默采纳,获得10
16秒前
ZZQ给ZZQ的求助进行了留言
16秒前
回霈琳发布了新的文献求助10
16秒前
16秒前
小马甲应助科研通管家采纳,获得10
17秒前
17秒前
STAR应助科研通管家采纳,获得10
17秒前
17秒前
呆萌忆秋发布了新的文献求助10
17秒前
木头马尾应助科研通管家采纳,获得10
17秒前
Linsey应助科研通管家采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668063
求助须知:如何正确求助?哪些是违规求助? 3226515
关于积分的说明 9769764
捐赠科研通 2936459
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759665
科研通“疑难数据库(出版商)”最低求助积分说明 735460