Data‐driven classification of left atrial morphology and its predictive impact on atrial fibrillation catheter ablation

医学 心房颤动 心脏病学 导管消融 内科学 烧蚀 P波 导管 外科
作者
Jiaju Li,Ke Chen,Liu He,Fangyuan Luo,Wei Wang,Yucai Hu,Jiangtao Zhao,Kui Zhu,Xiaowei Chen,Yuekun Zhang,Hailong Tao,Jianzeng Dong
出处
期刊:Journal of Cardiovascular Electrophysiology [Wiley]
卷期号:35 (4): 811-820 被引量:3
标识
DOI:10.1111/jce.16228
摘要

Abstract Introduction Various left atrial (LA) anatomical structures are correlated with postablative recurrence for atrial fibrillation (AF) patients. Comprehensively integrating anatomical structures, digitizing them, and implementing in‐depth analysis, which may supply new insights, are needed. Thus, we aim to establish an interpretable model to identify AF patients' phenotypes according to LA anatomical morphology, using machine learning techniques. Methods and Results Five hundred and nine AF patients underwent first ablation treatment in three centers were included and were followed‐up for postablative recurrent atrial arrhythmias. Data from 369 patients were regarded as training set, while data from another 140 patients, collected from different centers, were used as validation set. We manually measured 57 morphological parameters on enhanced computed tomography with three‐dimensional reconstruction technique and implemented unsupervised learning accordingly. Three morphological groups were identified, with distinct prognosis according to Kaplan−Meier estimator ( p < .001). Multivariable Cox model revealed that morphological grouping were independent predictors of 1‐year recurrence (Group 1: HR = 3.00, 95% CI: 1.51−5.95, p = .002; Group 2: HR = 4.68, 95% CI: 2.40−9.11, p < .001; Group 3 as reference). Furthermore, external validation consistently demonstrated our findings. Conclusions Our study illustrated the feasibility of employing unsupervised learning for the classification of LA morphology. By utilizing morphological grouping, we can effectively identify individuals at different risks of postablative recurrence and thereby assist in clinical decision‐making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XJTU_jyh完成签到,获得积分10
刚刚
1秒前
阿米尔发布了新的文献求助20
2秒前
光亮向露完成签到,获得积分10
2秒前
zoe完成签到,获得积分10
2秒前
swj发布了新的文献求助10
2秒前
王雪完成签到,获得积分10
3秒前
搜集达人应助gsdrv采纳,获得10
3秒前
Da完成签到,获得积分10
4秒前
过时的电灯胆完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
slimayw12发布了新的文献求助10
5秒前
香蕉觅云应助苏柏亚采纳,获得10
5秒前
6秒前
李健的小迷弟应助杨阳洋采纳,获得10
6秒前
科学家发布了新的文献求助10
6秒前
lyabigale完成签到 ,获得积分10
6秒前
杨一完成签到 ,获得积分10
6秒前
123发布了新的文献求助10
6秒前
天天摸鱼完成签到,获得积分10
6秒前
Hello应助搞怪绿柳采纳,获得10
6秒前
何洁完成签到,获得积分10
6秒前
7秒前
希望天下0贩的0应助nana湘采纳,获得10
7秒前
SciGPT应助Liury采纳,获得10
7秒前
ww完成签到,获得积分10
7秒前
科研通AI2S应助DI采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
kagami应助小李采纳,获得30
8秒前
9秒前
9秒前
自信的竹员外完成签到,获得积分10
9秒前
9秒前
9秒前
dou完成签到,获得积分10
9秒前
飞太难完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009462
求助须知:如何正确求助?哪些是违规求助? 3549388
关于积分的说明 11301996
捐赠科研通 3283894
什么是DOI,文献DOI怎么找? 1810448
邀请新用户注册赠送积分活动 886287
科研通“疑难数据库(出版商)”最低求助积分说明 811316