已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Neuromorphic Synergy for Video Binarization

人工智能 计算机视觉 计算机科学 神经形态工程学 运动估计 模式识别(心理学) 人工神经网络
作者
Shijie Lin,Xiang Zhang,Lei Yang,Lei Yu,Bin Zhou,Xiaowei Luo,Wenping Wang,Jia Pan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1403-1418
标识
DOI:10.1109/tip.2024.3364529
摘要

Bimodal objects, such as the checkerboard pattern used in camera calibration, markers for object tracking, and text on road signs, to name a few, are prevalent in our daily lives and serve as a visual form to embed information that can be easily recognized by vision systems. While binarization from intensity images is crucial for extracting the embedded information in the bimodal objects, few previous works consider the task of binarization of blurry images due to the relative motion between the vision sensor and the environment. The blurry images can result in a loss in the binarization quality and thus degrade the downstream applications where the vision system is in motion. Recently, neuromorphic cameras offer new capabilities for alleviating motion blur, but it is non-trivial to first deblur and then binarize the images in a real-time manner. In this work, we propose an event-based binary reconstruction method that leverages the prior knowledge of the bimodal target's properties to perform inference independently in both event space and image space and merge the results from both domains to generate a sharp binary image. We also develop an efficient integration method to propagate this binary image to high frame rate binary video. Finally, we develop a novel method to naturally fuse events and images for unsupervised threshold identification. The proposed method is evaluated in publicly available and our collected data sequence, and shows the proposed method can outperform the SOTA methods to generate high frame rate binary video in real-time on CPU-only devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
monere应助王九八采纳,获得10
2秒前
默默冬瓜应助ccb采纳,获得10
3秒前
4秒前
LIUYI发布了新的文献求助10
4秒前
chengmin完成签到,获得积分10
7秒前
辅仁发布了新的文献求助10
7秒前
渡己。完成签到,获得积分10
8秒前
Wangyr完成签到,获得积分20
9秒前
优秀老师完成签到,获得积分10
12秒前
12秒前
OCDer应助程风破浪采纳,获得200
15秒前
15秒前
HelenZ发布了新的文献求助10
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
16秒前
yangyangyang完成签到 ,获得积分10
17秒前
完美世界应助梦璃安采纳,获得10
17秒前
17秒前
渡己。发布了新的文献求助10
18秒前
Lyue发布了新的文献求助10
21秒前
19应助王九八采纳,获得30
22秒前
ppppp发布了新的文献求助10
23秒前
123应助12采纳,获得10
24秒前
24秒前
血茗完成签到 ,获得积分10
25秒前
26秒前
27秒前
27秒前
11完成签到,获得积分10
27秒前
30秒前
11发布了新的文献求助50
31秒前
无花果应助Aven采纳,获得10
32秒前
无花果应助默默耕耘人采纳,获得10
34秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Handbook of Respiratory Protection 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268425
求助须知:如何正确求助?哪些是违规求助? 2907963
关于积分的说明 8343966
捐赠科研通 2578251
什么是DOI,文献DOI怎么找? 1401868
科研通“疑难数据库(出版商)”最低求助积分说明 655215
邀请新用户注册赠送积分活动 634350