Fault diagnosis of transformer winding short circuit based on WKPCA-WM and IPOA-CNN

计算机科学 模式识别(心理学) 特征提取 工程类 算法 人工智能
作者
Xiping Pei,Songtao Han,Yanyan Bao,Wei Chen,Hengjie Li
出处
期刊:Frontiers in Energy Research [Frontiers Media SA]
卷期号:11 被引量:1
标识
DOI:10.3389/fenrg.2023.1151612
摘要

When the winding of the power transformer is short-circuited, the winding will experience constant vibration, which will cause axial instability of the winding, and then lead to winding looseness, deformation, bulge, etc., therefore, a diagnosis method based on the Improved Pelican Optimization Algorithm and Convolutional Neural Network (IPOA-CNN) for short-circuit voiceprint signal of transformer windings is proposed. At the same time, considering the input parameter dimension of deep learning cannot be too high, a new feature parameter selection method is constructed for this model. Firstly, the frequency characteristics of winding acoustic vibration signals are analyzed, and then the characteristic parameters of transformer acoustic signals are extracted by Wavelet Packet Energy Spectrum (WPES) and Mel Frequency Cepstrum Coefficient (MFCC), respectively. Then, the two methods are combined to construct the WM feature extraction algorithm, and the Weighted Kernel Principal Component Analysis (WKPCA) is used to reduce the dimension of the feature to obtain the feature parameters with accurate feature information and low redundancy; Finally, combined with Sobol sequence to optimize the initial population of Pelican Optimization Algorithm (POA), the convolution kernel of Convolutional neural network (CNN) was optimized by IPOA, and the optimal convolution kernel was obtained. The transformer winding short-circuits voiceprint diagnosis models of WKPCA-WM and IPOA-CNN were constructed, which realized the accurate diagnosis of winding short-circuit voiceprint. The validity and feasibility of the method are verified by the acoustic signal data collected in the laboratory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CA发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
充电宝应助陶醉的雁风采纳,获得10
1秒前
胖胖龙发布了新的文献求助10
1秒前
背影关注了科研通微信公众号
1秒前
3秒前
3秒前
4秒前
务实鞅完成签到 ,获得积分10
4秒前
lijingwen发布了新的文献求助10
5秒前
kjding完成签到,获得积分10
5秒前
月潮共生完成签到 ,获得积分10
5秒前
友好灵松完成签到,获得积分10
6秒前
7秒前
lalaland完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
maow发布了新的文献求助10
8秒前
luoluo完成签到,获得积分10
9秒前
gyl发布了新的文献求助10
9秒前
WQ发布了新的文献求助10
10秒前
Dye发布了新的文献求助10
10秒前
科研通AI2S应助youyouyouyouyou采纳,获得10
10秒前
10秒前
乐观的丹琴完成签到 ,获得积分10
11秒前
12秒前
记录后果完成签到 ,获得积分10
13秒前
16秒前
17秒前
18秒前
橙子完成签到 ,获得积分10
18秒前
梧桐发布了新的文献求助10
19秒前
20秒前
21秒前
F少发布了新的文献求助10
21秒前
张文康完成签到,获得积分10
22秒前
番茄市长完成签到,获得积分10
23秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
SAS, Python and R: A Cross-Reference Guide for Data Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3385997
求助须知:如何正确求助?哪些是违规求助? 2999290
关于积分的说明 8784466
捐赠科研通 2685022
什么是DOI,文献DOI怎么找? 1470768
科研通“疑难数据库(出版商)”最低求助积分说明 679950
邀请新用户注册赠送积分活动 672456