On Greedy-Like Policies in Online Matching with Reusable Network Resources and Decaying Rewards

贪婪算法 匹配(统计) 计算机科学 业务 微观经济学 数学优化 运筹学 经济 数学 统计 算法
作者
David Simchi‐Levi,Zeyu Zheng,Feng Zhu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.02588
摘要

We build a unified modeling framework for classical online matching problems and emerging online matching problems with three additional practical features: reusable resources, network resources, and decaying rewards. For online matching problems in the unified framework, we provide a unified performance analysis tool for the greedy policy and its simple variants, which we refer to as greedy-like policies. We prove that greedy-like policies can achieve near-optimal performances for online matching problems in the unified framework, where the policy performance is measured by competitive ratios under adversarial environments. We then analyze several representative special classes of online matching problems, which incorporate additional realistic structural assumptions on top of the unified framework. Specifically, we consider online matching problems with each of the following three additional structures: (i) singleton resources with time-decaying rewards; (ii) network resources with accept/reject decisions; and (iii) network resources with interval-type bundles. We show that for these special classes of online matching problems, slight modifications to greedy-like policies can successfully utilize additional structural information to further enhance policy performances. This work may suggest that the greedy policy and its variants, despite its simplicity, can achieve reliable performances for a number of emerging online matching problems. This paper was accepted by J. George Shanthikumar, data science. Funding: The work of D. Simchi-Levi and F. Zhu is partially supported by the Massachusetts Institute of Technology Data Science Laboratory. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2023.02588 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wjh5+发布了新的文献求助20
刚刚
lsy发布了新的文献求助10
刚刚
1秒前
YYYYYY完成签到 ,获得积分10
1秒前
暴躁四叔应助整齐的丹秋采纳,获得30
1秒前
1秒前
哈哈恬发布了新的文献求助10
2秒前
wanci应助zhaoyinghua采纳,获得10
2秒前
wjl发布了新的文献求助10
3秒前
幸福珩发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
朵拉发布了新的文献求助10
5秒前
科研通AI5应助MQ采纳,获得10
5秒前
6秒前
6秒前
香蕉觅云应助范云凯采纳,获得10
7秒前
7秒前
lalalala发布了新的文献求助10
8秒前
天天快乐应助besatified采纳,获得10
9秒前
9秒前
Xiaoshen发布了新的文献求助10
10秒前
guan发布了新的文献求助10
11秒前
张张孟孟发布了新的文献求助10
11秒前
专注寻菱发布了新的文献求助10
11秒前
顾矜应助佳妮采纳,获得10
12秒前
一一师兄完成签到,获得积分20
12秒前
12秒前
研友_850EYZ发布了新的文献求助10
12秒前
13秒前
SisiZheng发布了新的文献求助10
13秒前
科研通AI5应助研友_ZelDDn采纳,获得10
14秒前
X先生完成签到 ,获得积分10
15秒前
15秒前
小二郎应助昵称采纳,获得10
15秒前
汉堡包应助欣喜石头采纳,获得10
16秒前
16秒前
打打应助羊小羊采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515778
求助须知:如何正确求助?哪些是违规求助? 3098003
关于积分的说明 9237753
捐赠科研通 2792964
什么是DOI,文献DOI怎么找? 1532775
邀请新用户注册赠送积分活动 712297
科研通“疑难数据库(出版商)”最低求助积分说明 707233