欧姆接触
退火(玻璃)
材料科学
量子隧道
肖特基势垒
分析化学(期刊)
光电子学
物理
纳米技术
图层(电子)
化学
有机化学
复合材料
二极管
作者
V. M. Mikoushkin,E. A. Makarevskaya,Dmitry A. Novikov,С.В. Никонов,Irina B. Suslova
标识
DOI:10.1109/ted.2023.3269726
摘要
To elucidate the possibility of creating an ohmic contact with an extremely thin p-GaAs nanolayer, we have studied the properties of the contact deposited without annealing (“cold” contact) with a p-layer $\sim $ 8 nm thick formed on the n-GaAs wafer by low-energy Ar $^{+}$ ions due to the conductivity type conversion (n $\to $ p). Exclusion of annealing prevents metallization of the semiconductor nanolayer. Despite the obvious formation of the Schottky barrier and the presence of a residual oxide layer, the current–voltage characteristics of the ion-induced p-n structure indicates the ohmic nature of the contact. It is shown that high concentration of defects in the irradiated p-layer leads to a decrease in the barrier width down to the value ${W}$ = 0.3 nm, which is much smaller than the de Broglie wavelength of p-layer charge carriers ( $\lambda >$ 2–19 nm). Therefore, the ohmic character of the contact is provided by holes and electrons of the p-layer tunneling through the barrier. It is shown that the “cold” tunneling ohmic contact on p-GaAs can be formed with any metal if a defect or doping density is ${N}_{\text {D}} > 10^{20}$ cm $^{-{3}}$ , which is an order of magnitude higher than the value ( ${N}_{\text {D}} > 10^{19}$ cm $^{-{3}}{)}$ considered as providing efficient tunneling of carriers through a contact with heavily doped n-type semiconductors.
科研通智能强力驱动
Strongly Powered by AbleSci AI