Interactions between host and pathogen are involving various dynamic changes in transcript expression and critical for understanding host immunity against infections and its associated pathogenesis. Herein, we established a model of channel catfish infected with Aeromonas veronii. The infected fish had prominent body surface bleeding, and the spleen showed hyperemia and swelling. Then, the spleen of channel catfish infected with A. veronii was analyzed by dual RNA sequencing (RNA-seq), and the transcriptome data were compared with uninfected channel catfish spleen or bacteria cultured in vitro. The transcript expression profile of pathogen-host interaction between A. veronii and channel catfish was successfully studied. During infection, the host was enriched for multiple immune-related signaling pathways, such as the Toll-like receptor signaling pathway, Cytokine-cytokine receptor interaction, and T cell receptor signaling pathway; and significantly upregulated for many innate immune-related genes, including IL-8. At the same time, we found that A. veronii mainly harmed the host spleen through hemolysin. Our current findings are of great significance in clarifying the pathogenesis of channel catfish induced by A. veronii and provide gene targets for developing preventive measures.