State-specific protein-ligand complex structure prediction with a multi-scale deep generative model

配体(生物化学) 蛋白质结构 合作性 对接(动物) 化学 蛋白质配体 计算机科学 人工智能 计算生物学 生物 生物化学 医学 护理部 受体
作者
Zhuoran Qiao,Weili Nie,Arash Vahdat,Thomas F. Miller,Anima Anandkumar
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.48550/arxiv.2209.15171
摘要

The binding complexes formed by proteins and small molecule ligands are ubiquitous and critical to life. Despite recent advancements in protein structure prediction, existing algorithms are so far unable to systematically predict the binding ligand structures along with their regulatory effects on protein folding. To address this discrepancy, we present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures solely using protein sequence and ligand molecular graph inputs. NeuralPLexer adopts a deep generative model to sample the 3D structures of the binding complex and their conformational changes at an atomistic resolution. The model is based on a diffusion process that incorporates essential biophysical constraints and a multi-scale geometric deep learning system to iteratively sample residue-level contact maps and all heavy-atom coordinates in a hierarchical manner. NeuralPLexer achieves state-of-the-art performance compared to all existing methods on benchmarks for both protein-ligand blind docking and flexible binding site structure recovery. Moreover, owing to its specificity in sampling both ligand-free-state and ligand-bound-state ensembles, NeuralPLexer consistently outperforms AlphaFold2 in terms of global protein structure accuracy on both representative structure pairs with large conformational changes (average TM-score=0.93) and recently determined ligand-binding proteins (average TM-score=0.89). Case studies reveal that the predicted conformational variations are consistent with structure determination experiments for important targets, including human KRAS$^\textrm{G12C}$, ketol-acid reductoisomerase, and purine GPCRs. Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
1秒前
dreamode应助科研通管家采纳,获得10
1秒前
云烟成雨应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
搜集达人应助游戏人间采纳,获得10
2秒前
2秒前
Brian_Fang完成签到,获得积分10
3秒前
伍德完成签到,获得积分10
3秒前
4秒前
4秒前
6秒前
8秒前
华仔应助三桥采纳,获得20
8秒前
8秒前
9秒前
lili发布了新的文献求助40
10秒前
ding应助小何采纳,获得10
10秒前
CodeCraft应助Mr杜采纳,获得10
11秒前
乐观又晴完成签到,获得积分10
12秒前
bkagyin应助小凯采纳,获得10
12秒前
nilu发布了新的文献求助10
12秒前
13秒前
14秒前
着急毕业的干饭人完成签到,获得积分10
14秒前
15秒前
15秒前
我是萨比完成签到,获得积分10
15秒前
江九言完成签到,获得积分10
16秒前
16秒前
SciGPT应助娃哈哈采纳,获得10
18秒前
18秒前
科目三应助Coral.采纳,获得10
19秒前
cici发布了新的文献求助10
19秒前
达芙发布了新的文献求助10
19秒前
英俊的铭应助喜悦秋白采纳,获得10
20秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466441
求助须知:如何正确求助?哪些是违规求助? 3059219
关于积分的说明 9065619
捐赠科研通 2749724
什么是DOI,文献DOI怎么找? 1508697
科研通“疑难数据库(出版商)”最低求助积分说明 697013
邀请新用户注册赠送积分活动 696780