TOPIC: A Parallel Association Paradigm for Multi-Object Tracking under Complex Motions and Diverse Scenes

计算机科学 计算机视觉 人工智能 联想(心理学) 数据关联 对象(语法) 跟踪(教育) 视频跟踪 计算机图形学(图像) 模式识别(心理学) 心理学 教育学 哲学 认识论 滤波器(信号处理)
作者
Xiaoyan Cao,Yiyao Zheng,Yao Yao,Huapeng Qin,Xiaoyu Cao,Shihui Guo
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3526066
摘要

Video data and algorithms have been driving advances in multi-object tracking (MOT). While existing MOT datasets focus on occlusion and appearance similarity, complex motion patterns are widespread yet overlooked. To address this issue, we introduce a new dataset called BEE24 to highlight complex motions. Identity association algorithms have long been the focus of MOT research. Existing trackers can be categorized into two association paradigms: single-feature paradigm (based on either motion or appearance feature) and serial paradigm (one feature serves as secondary while the other is primary). However, these paradigms are incapable of fully utilizing different features. In this paper, we propose a parallel paradigm and present the Two rOund Parallel matchIng meChanism (TOPIC) to implement it. The TOPIC leverages both motion and appearance features and can adaptively select the preferable one as the assignment metric based on motion level. Moreover, we provide an Attention-based Appearance Reconstruction Module (AARM) to reconstruct appearance feature embeddings, thus enhancing the representation of appearance features. Comprehensive experiments show that our approach achieves state-of-the-art performance on four public datasets and BEE24. Moreover, BEE24 challenges existing trackers to track multiple similar-appearing small objects with complex motions over long periods, which is critical in real-world applications such as beekeeping and drone swarm surveillance. Notably, our proposed parallel paradigm surpasses the performance of existing association paradigms by a large margin, e.g., reducing false negatives by 6% to 81% compared to the single-feature association paradigm. The introduced dataset and association paradigm in this work offer a fresh perspective for advancing the MOT field. The source code and dataset are available at https://github.com/holmescao/TOPICTrack.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
fann完成签到 ,获得积分10
2秒前
2秒前
郭泓嵩发布了新的文献求助30
3秒前
3秒前
快乐仙知发布了新的文献求助10
3秒前
4秒前
ccc发布了新的文献求助10
4秒前
SCI小能手发布了新的文献求助30
5秒前
疯狂的山彤完成签到,获得积分10
5秒前
毛毛完成签到,获得积分10
5秒前
科研通AI5应助邱夫斯基采纳,获得10
6秒前
6秒前
科研通AI5应助scinewbee采纳,获得10
6秒前
7秒前
欣喜亚男发布了新的文献求助10
7秒前
7秒前
7秒前
坚强白凝发布了新的文献求助10
7秒前
俺来了发布了新的文献求助10
8秒前
nbnbaaa发布了新的文献求助10
9秒前
9秒前
10秒前
困的不行完成签到,获得积分20
10秒前
毛毛发布了新的文献求助10
10秒前
明明完成签到,获得积分20
10秒前
XXXX发布了新的社区帖子
11秒前
wanci应助笑面客采纳,获得10
11秒前
江峰发布了新的文献求助10
12秒前
吱布吱布发布了新的文献求助10
12秒前
九点半睡饱完成签到,获得积分10
12秒前
12秒前
坚强白凝完成签到,获得积分10
13秒前
13秒前
科研通AI5应助周新运采纳,获得10
13秒前
CodeCraft应助猫滩儿采纳,获得10
13秒前
领导范儿应助明亮画笔采纳,获得10
13秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769687
求助须知:如何正确求助?哪些是违规求助? 3314764
关于积分的说明 10173625
捐赠科研通 3030095
什么是DOI,文献DOI怎么找? 1662612
邀请新用户注册赠送积分活动 795054
科研通“疑难数据库(出版商)”最低求助积分说明 756519