iPSI(2L)-EDL: a Two-layer Predictor for Identifying Promoters and their Types based on Ensemble Deep Learning

发起人 卷积神经网络 计算生物学 DNA 人工智能 生物 基因 遗传学 机器学习 基因表达 计算机科学
作者
Xuan Xiao,Zaihao Hu,Zhentao Luo,Zhaochun Xu
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:18
标识
DOI:10.2174/0115748936264316230926073231
摘要

Abstract: Promoters are DNA fragments located near the transcription initiation site, they can be divided into strong promoter type and weak promoter type according to transcriptional activation and expression level. Identifying promoters and their strengths in DNA sequences is essential for understanding gene expression regulation. Therefore, it is crucial to further improve predictive quality of predictors for real-world application requirements. Here, we constructed the latest training dataset based on the RegalonDB website, where all the promoters in this dataset have been experimentally validated, and their sequence similarity is less than 85%. We used one-hot and nucleotide chemical property and density (NCPD) to represent DNA sequence samples. Additionally, we proposed an ensemble deep learning framework containing a multi-head attention module, long short-term memory present, and a convolutional neural network module. The results showed that iPSI(2L)-EDL outperformed other existing methods for both promoter prediction and identification of strong promoter type and weak promoter type, the AUC and MCC for the iPSI(2L)-EDL in identifying promoter were improved by 2.23% and 2.96% compared to that of PseDNC-DL on independent testing data, respectively, while the AUC and MCC for the iPSI(2L)- EDL were increased by 3.74% and 5.86% in predicting promoter strength type, respectively. The results of ablation experiments indicate that CNN plays a crucial role in recognizing promoters, the importance of different input positions and long-range dependency relationships among features are helpful for recognizing promoters. Furthermore, to make it easier for most experimental scientists to get the results they need, a userfriendly web server has been established and can be accessed at http://47.94.248.117/IPSW(2L)-EDL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知之然完成签到,获得积分10
刚刚
beyond完成签到,获得积分10
1秒前
zzzzz完成签到,获得积分20
1秒前
英勇涔发布了新的文献求助10
2秒前
Evelyn100899发布了新的文献求助20
2秒前
小黑爱搞科研完成签到,获得积分20
2秒前
3秒前
Aixzhou完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
gdh发布了新的文献求助10
4秒前
不配.应助monica采纳,获得10
5秒前
科小白完成签到 ,获得积分10
7秒前
8秒前
深情安青应助墨岩采纳,获得30
8秒前
waibazi发布了新的文献求助10
8秒前
9秒前
IAMXC发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
ll发布了新的文献求助10
9秒前
愤怒的树叶完成签到,获得积分10
9秒前
asdasd完成签到 ,获得积分10
10秒前
10秒前
完美的机器猫完成签到,获得积分10
11秒前
zhizhaomai应助杨旸采纳,获得10
12秒前
小鱼同学发布了新的文献求助10
13秒前
14秒前
14秒前
在水一方应助扶风采纳,获得10
14秒前
Wang发布了新的文献求助10
15秒前
krkr发布了新的文献求助10
15秒前
领导范儿应助欣喜成仁采纳,获得10
15秒前
所所应助baby的跑男采纳,获得10
17秒前
18秒前
beyond关注了科研通微信公众号
18秒前
锐仔完成签到,获得积分10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145665
求助须知:如何正确求助?哪些是违规求助? 2797153
关于积分的说明 7823057
捐赠科研通 2453466
什么是DOI,文献DOI怎么找? 1305677
科研通“疑难数据库(出版商)”最低求助积分说明 627532
版权声明 601469