DC-SiamNet: Deep contrastive Siamese network for self-supervised MRI reconstruction

计算机科学 人工智能 模式识别(心理学) 初始化 迭代重建 深度学习 实时核磁共振成像 监督学习 特征(语言学) 相似性(几何) 磁共振成像 人工神经网络 图像(数学) 医学 语言学 哲学 放射科 程序设计语言
作者
Yanghui Yan,Tiejun Yang,Xiang Zhao,Chunxia Jiao,Aolin Yang,Jianyu Miao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107619-107619 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107619
摘要

Reconstruction methods based on deep learning have greatly shortened the data acquisition time of magnetic resonance imaging (MRI). However, these methods typically utilize massive fully sampled data for supervised training, restricting their application in certain clinical scenarios and posing challenges to the reconstruction effect when high-quality MR images are unavailable. Recently, self-supervised methods have been developed that only undersampled MRI images participate in the network training. Nevertheless, due to the lack of complete referable MR image data, self-supervised reconstruction is prone to produce incorrect structure contents, such as unnatural texture details and over-smoothed tissue sites. To solve this problem, we propose a self-supervised Deep Contrastive Siamese Network (DC-SiamNet) for fast MR imaging. First, DC-SiamNet performs the reconstruction with a Siamese unrolled structure and obtains visual representations in different iterative phases. Particularly, an attention-weighted average pooling module is employed at the bottleneck layer of the U-shape regularization unit, which can effectively aggregate valuable local information of the underlying feature map in the generated representation vector. Then, a novel hybrid loss function is designed to drive the self-supervised reconstruction and contrastive learning simultaneously by forcing the output consistency across different branches in the frequency domain, the image domain, and the latent space. The proposed method is extensively evaluated with different sampling patterns on the IXI brain dataset and the MRINet knee dataset. Experimental results show that DC-SiamNet can achieve 0.93 in structural similarity and 33.984 dB in peak signal-to-noise ratio on the IXI brain dataset under 8x acceleration. It has better reconstruction accuracy than other methods, and the performance is close to the corresponding model trained with full supervision, especially when the sampling rate is low. In addition, generalization experiments verify that our method has a strong cross-domain reconstruction ability for different contrast brain images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张博发布了新的文献求助10
刚刚
阿会关注了科研通微信公众号
1秒前
弈yx完成签到,获得积分10
3秒前
4秒前
4秒前
hyy完成签到,获得积分10
5秒前
屁颠屁颠_狼完成签到 ,获得积分0
5秒前
bubble完成签到,获得积分10
5秒前
6秒前
6秒前
星辰大海应助kk采纳,获得10
6秒前
7秒前
7秒前
zf完成签到 ,获得积分10
8秒前
9秒前
hyy发布了新的文献求助10
9秒前
momo发布了新的文献求助10
9秒前
10秒前
bubble发布了新的文献求助10
12秒前
12秒前
阿会发布了新的文献求助10
12秒前
bob发布了新的文献求助10
12秒前
小黑妞发布了新的文献求助10
12秒前
本是个江湖散人完成签到,获得积分10
14秒前
腼腆的鸵鸟完成签到,获得积分10
15秒前
科目三应助圆圆的波仔采纳,获得10
15秒前
香蕉觅云应助WWW采纳,获得10
17秒前
易寒完成签到,获得积分10
18秒前
梓歆发布了新的文献求助10
18秒前
小黑妞完成签到,获得积分10
18秒前
19秒前
yyyyyy完成签到,获得积分10
20秒前
田様应助LYB吕采纳,获得10
21秒前
lusuoshan完成签到,获得积分10
22秒前
学术小天才完成签到 ,获得积分10
22秒前
23秒前
wubuking完成签到 ,获得积分10
23秒前
24秒前
文刀武书生完成签到,获得积分10
24秒前
Dr.Mary完成签到 ,获得积分10
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260