A modeling method of wide random forest multi-output soft sensor with attention mechanism for quality prediction of complex industrial processes

软传感器 可解释性 随机森林 计算机科学 特征(语言学) 一般化 数据挖掘 质量(理念) 机器学习 人工智能 变量(数学) 生产(经济) 过程(计算) 数学 语言学 经济 宏观经济学 哲学 数学分析 操作系统 认识论
作者
Yin Wan,Ding Liu,Jun-Chao Ren
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:59: 102255-102255 被引量:13
标识
DOI:10.1016/j.aei.2023.102255
摘要

Complex industrial production processes often involve multiple product quality indicators that are interrelated. There exists a complex nonlinear mapping relationship between the operational input feature variables and multiple output target quality variables, making it difficult to accurately model through first-principle models. In order to fully capture the complex relationship between measurable variables and difficult-to-measure quality variables, and achieve accurate prediction of multiple output variables to meet the needs of practical industrial sites, this paper proposes a broad random forest-based multi-output soft sensor modeling method based on the idea of attention mechanism derived from the concept of broad learning systems. This method comprehensively considers the dynamic impact of different feature variables on the target quality indicators in actual production processes. The attention mechanism assists the soft sensor model in capturing contextual information better when dealing with long sequences, with a focus on the relevant parts related to the current task. Additionally, the interpretable random forest algorithm is employed as the weight estimator for the basic feature learning unit of Broad-based learning, enabling regression modeling of multiple target quality variables. The use of Broad-based random forest improves the model's learning ability, interpretability, and generalization capability. To validate the reliability of the proposed method, it was applied to real industrial cases. The results demonstrated that the multi-output quality variable prediction performance of the proposed soft sensor outperforms existing soft sensors in terms of prediction accuracy. This indicates promising industrial application prospects for the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
cruise发布了新的文献求助10
1秒前
向日葵的Rui完成签到,获得积分10
1秒前
小xy发布了新的文献求助10
1秒前
2秒前
香蕉觅云应助青石采纳,获得10
2秒前
科目三应助yangyang采纳,获得10
2秒前
仄兀发布了新的文献求助10
2秒前
小小鱼发布了新的文献求助10
2秒前
孙成成完成签到 ,获得积分10
3秒前
ee完成签到,获得积分10
3秒前
刘德华完成签到,获得积分10
3秒前
Disci完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
帅气鹭洋发布了新的文献求助10
5秒前
夏昼发布了新的文献求助10
5秒前
cometx完成签到 ,获得积分10
6秒前
路之遥兮发布了新的文献求助10
6秒前
yy发布了新的文献求助10
6秒前
6秒前
852应助100采纳,获得10
6秒前
爱静静应助cruise采纳,获得10
7秒前
Singularity应助cruise采纳,获得10
7秒前
VDC应助cruise采纳,获得30
7秒前
7秒前
7秒前
了晨完成签到 ,获得积分10
8秒前
小xy完成签到,获得积分10
8秒前
9秒前
小昼完成签到 ,获得积分10
9秒前
尊敬的完成签到,获得积分10
10秒前
10秒前
整齐海秋完成签到,获得积分10
10秒前
10秒前
善学以致用应助白榆采纳,获得10
10秒前
JamesPei应助易达采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678