亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A modeling method of wide random forest multi-output soft sensor with attention mechanism for quality prediction of complex industrial processes

软传感器 可解释性 随机森林 计算机科学 特征(语言学) 一般化 数据挖掘 质量(理念) 机器学习 人工智能 变量(数学) 生产(经济) 过程(计算) 数学 语言学 经济 宏观经济学 哲学 数学分析 操作系统 认识论
作者
Yin Wan,Ding Liu,Jun-Chao Ren
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:59: 102255-102255 被引量:4
标识
DOI:10.1016/j.aei.2023.102255
摘要

Complex industrial production processes often involve multiple product quality indicators that are interrelated. There exists a complex nonlinear mapping relationship between the operational input feature variables and multiple output target quality variables, making it difficult to accurately model through first-principle models. In order to fully capture the complex relationship between measurable variables and difficult-to-measure quality variables, and achieve accurate prediction of multiple output variables to meet the needs of practical industrial sites, this paper proposes a broad random forest-based multi-output soft sensor modeling method based on the idea of attention mechanism derived from the concept of broad learning systems. This method comprehensively considers the dynamic impact of different feature variables on the target quality indicators in actual production processes. The attention mechanism assists the soft sensor model in capturing contextual information better when dealing with long sequences, with a focus on the relevant parts related to the current task. Additionally, the interpretable random forest algorithm is employed as the weight estimator for the basic feature learning unit of Broad-based learning, enabling regression modeling of multiple target quality variables. The use of Broad-based random forest improves the model's learning ability, interpretability, and generalization capability. To validate the reliability of the proposed method, it was applied to real industrial cases. The results demonstrated that the multi-output quality variable prediction performance of the proposed soft sensor outperforms existing soft sensors in terms of prediction accuracy. This indicates promising industrial application prospects for the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CATH完成签到 ,获得积分10
30秒前
46秒前
47秒前
Jack发布了新的文献求助30
54秒前
深情安青应助don采纳,获得10
58秒前
Hello应助Jack采纳,获得10
59秒前
1分钟前
1分钟前
1分钟前
涵涵耶耶发布了新的文献求助10
1分钟前
XYZ发布了新的文献求助10
1分钟前
CipherSage应助liudy采纳,获得10
1分钟前
XYZ完成签到,获得积分10
1分钟前
顺心盼山关注了科研通微信公众号
1分钟前
Owen应助涵涵耶耶采纳,获得10
1分钟前
1分钟前
liudy完成签到,获得积分10
1分钟前
1分钟前
liudy发布了新的文献求助10
1分钟前
涵涵耶耶完成签到,获得积分10
1分钟前
1分钟前
顺心盼山发布了新的文献求助10
1分钟前
许大脚完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
特特雷珀萨努完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助可靠的寒风采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
狂野晓蕾完成签到,获得积分20
5分钟前
沉静代芹完成签到 ,获得积分10
5分钟前
文文发布了新的文献求助10
6分钟前
6分钟前
wax应助文文采纳,获得10
6分钟前
多读苏发布了新的文献求助10
6分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335334
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8614028
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447401
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974