Geometric-inspired graph-based Incomplete Multi-view Clustering

聚类分析 计算机科学 数据挖掘 缺少数据 透视图(图形) 图形 人工智能 插件 理论计算机科学 机器学习 程序设计语言
作者
Zequn Yang,Han Zhang,Yake Wei,Zheng Wang,Feiping Nie,Di Hu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:147: 110082-110082 被引量:9
标识
DOI:10.1016/j.patcog.2023.110082
摘要

Multi-view clustering methods group data into different clusters by discovering the consensus in heterogeneous sources, which however becomes difficult when partial views of real-world data are missing. Consequently, reducing the impact of missing views and leveraging available views are the key concerns for the Incomplete Multi-view Clustering (IMvC) problem. In this research, we take an innovative, geometry-based perspective to investigate the IMvC problem under a commonly-used weight aggregation framework. We conduct a geometric analysis to understand how missing views shift the aggregation solution from the one achieved with full views, subsequently impacting the clustering result. Drawing from our analysis, we introduce a weight reallocation approach that minimizes the shift and approximates the full-view solution by reallocating the factual weight of each available view. Furthermore, we address the IMvC problem by using our reallocation method on a graph aggregation algorithm to obtain reliable clusters. Our extensive experiments demonstrate that our proposed approach outperforms previous IMvC methods, reporting superior results on four datasets with three metrics. Especially, on the Caltech101-7 dataset with 40 percent missing data, our method achieves an accuracy of 0.686, which significantly outperforms the results of other comparison methods that are no larger than 0.662. Further, our method can be used as a flexible plugin to improve other weight aggregation algorithms. The source code of this work is publicly available at https://github.com/bjlfzs/Geometric-Inspired-Graph-based-Incomplete-Multi-view-Clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
張肉肉发布了新的文献求助10
刚刚
1秒前
星辰大海应助wowo采纳,获得10
4秒前
benyu完成签到,获得积分10
4秒前
4秒前
李爱国应助文艺的鱼采纳,获得10
4秒前
云山万重应助洛洛采纳,获得10
5秒前
小马甲应助Sun采纳,获得10
5秒前
6秒前
6秒前
强健的中蓝完成签到,获得积分10
7秒前
夏天发布了新的文献求助10
7秒前
zhangsudi发布了新的文献求助10
7秒前
liu完成签到,获得积分20
8秒前
9秒前
111完成签到 ,获得积分10
9秒前
丘比特应助qwe采纳,获得10
9秒前
10秒前
神奇科研圆完成签到,获得积分10
10秒前
乐观寄真完成签到 ,获得积分10
11秒前
12秒前
12秒前
王铭元发布了新的文献求助10
12秒前
13秒前
111关注了科研通微信公众号
13秒前
張肉肉完成签到,获得积分20
14秒前
刘迪发布了新的文献求助10
15秒前
15秒前
16秒前
王大敏发布了新的文献求助10
17秒前
SYLH应助21B902041采纳,获得10
17秒前
今后应助夏天采纳,获得10
18秒前
20秒前
daheeeee完成签到,获得积分10
20秒前
21秒前
lbx发布了新的文献求助10
22秒前
Auksiyu发布了新的文献求助10
22秒前
文艺的鱼发布了新的文献求助10
23秒前
淡定从凝发布了新的文献求助10
24秒前
赘婿应助勇往直前采纳,获得10
25秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
Development and Industrialization of Stereoregular Polynorbornenes 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421421
求助须知:如何正确求助?哪些是违规求助? 3022195
关于积分的说明 8899538
捐赠科研通 2709460
什么是DOI,文献DOI怎么找? 1485759
科研通“疑难数据库(出版商)”最低求助积分说明 686900
邀请新用户注册赠送积分活动 681973