SRDF: Single-Stage Rotate Object Detector via Dense Prediction and False Positive Suppression

最小边界框 假阳性悖论 人工智能 计算机科学 模式识别(心理学) 跳跃式监视 目标检测 杂乱 特征(语言学) 合成孔径雷达 特征提取 探测器 假阳性和假阴性 边界(拓扑) 计算机视觉 数学 图像(数学) 雷达 电信 数学分析 语言学 哲学
作者
Beihang Song,Jing Li,Jia Wu,Bo Du,Jun Chang,Jun Wan,Tianpeng Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:2
标识
DOI:10.1109/tgrs.2023.3299299
摘要

Oriented object detection has made astonishing progress. However, existing methods neglect to address the issue of false positives caused by the background or nearby clutter objects. Meanwhile, class imbalance and boundary overflow issues caused by the predicting rotation angles may affect the accuracy of rotated bounding box predictions. To address the above issues, we propose a Single-stage Rotate object detector via Dense prediction and False positive suppression (SRDF). Specifically, we design an Instance-level False Positive Suppression Module (IFPSM), IFPSM acquires the weight information of target and non-target regions by supervised learning of spatial feature encoding, and applies these weight values to the deep feature map, thereby attenuating the response signals of non-target regions within the deep feature map. Compared to commonly used attention mechanisms, this approach more accurately suppresses false positive regions. Then, we introduce a hybrid classification and regression method to represent the object orientation, the proposed mothed divide the angle into two segments for prediction, reducing the number of categories and narrowing the range of regression. This alleviates the issue of class imbalance caused by treating one degree as a single category in classification prediction, as well as the problem of boundary overflow caused by directly regressing the angle. In addition, we transform the traditional post-processing steps based on matching and searching to a two-dimensional probability distribution mathematical model, which accurately and quickly extracts the bounding boxes from dense prediction results. Extensive experiments on Remote Sensing, Synthetic Aperture Radar, and Scene Text benchmarks demonstrate the superiority of the proposed SRDF method over state-of-the-art rotated object detection methods. Our codes are available at https://github.com/TomZandJerryZ/SRDF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
当女遇到乔完成签到 ,获得积分10
1秒前
1秒前
19854173750发布了新的文献求助10
3秒前
流明明完成签到,获得积分10
3秒前
小小冰完成签到,获得积分10
3秒前
研友_VZG7GZ应助freedom313514采纳,获得10
5秒前
Wangyr发布了新的文献求助10
5秒前
hh完成签到,获得积分10
5秒前
阿rain完成签到,获得积分10
6秒前
落寞溪灵完成签到 ,获得积分10
6秒前
LTT发布了新的文献求助10
6秒前
6秒前
留猪完成签到,获得积分10
7秒前
8秒前
科研通AI5应助yolo采纳,获得10
10秒前
10秒前
毛头侠发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
拾柒完成签到,获得积分10
13秒前
努力发布了新的文献求助10
14秒前
幽默白柏完成签到,获得积分10
14秒前
beiyangtidu发布了新的文献求助10
14秒前
15秒前
酷炫葵阴完成签到,获得积分10
16秒前
温暖的沛凝完成签到 ,获得积分10
16秒前
17秒前
善良晓博发布了新的文献求助10
17秒前
LTT完成签到,获得积分10
17秒前
小小冰发布了新的文献求助10
17秒前
园艺小学生完成签到,获得积分10
18秒前
十里长亭发布了新的文献求助10
18秒前
2021完成签到 ,获得积分10
19秒前
yolo发布了新的文献求助10
19秒前
freedom313514发布了新的文献求助10
20秒前
李健的小迷弟应助李文龙采纳,获得10
20秒前
21秒前
Joy完成签到,获得积分10
21秒前
无为完成签到,获得积分10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703