Similarity indicator and CG-CGAN prediction model for remaining useful life of rolling bearings

相似性(几何) 计算机科学 人工智能 模式识别(心理学) 图像(数学)
作者
Yang Liu,Binbin Dan,Cancan Yi,Li Shuhang,Yan Xuguo,Han Xiao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086107-086107 被引量:6
标识
DOI:10.1088/1361-6501/ad41f7
摘要

Abstract To tackle the challenges of performing early fault warning and improving the prediction accuracy for the remaining useful life (RUL) of rolling bearings, this paper proposes a similarity health indicator and a predictive model of CG-conditional generative adversarial network (CGAN), which relies on a CGAN that combines one-dimensional convolutional neural network (CNN) with a bidirectional gate recurrent unit (Bi-GRU). This framework provides a comprehensive theoretical foundation for RUL prediction of rolling bearings. The similarity health indicator allows for early fault warning of rolling bearings without expert knowledge. Within the CGAN framework, the inclusion of constraints guides the generation of samples in a more targeted manner. Additionally, the proposed CG-CGAN model incorporates Bi-GRU to consider both forward and backward information, thus improving the precision of RUL forecasting. Firstly, the similarity indicator between the vibration signals of the rolling bearing over its full life span and the standard vibration signals (healthy status) is calculated. This indicator helps to determine the early deterioration points of the rolling bearings. Secondly, the feature matrix composed of traditional health indicators and similarity health indicator, is utilized to train and test the proposed CG-CGAN model for RUL prediction. Finally, to corroborate the efficacy of the proposed method, two sets of real experiment data of rolling bearing accelerated life from the Intelligent Maintenance Systems (IMS) are utilized. Experimental findings substantiate that the proposed similarity health indicator offers early fault alerts and precisely delineates the performance diminution of the rolling bearing. Furthermore, the put-forward CG-CGAN model achieves high-precision RUL prediction of rolling bearing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助111采纳,获得10
1秒前
Victor完成签到 ,获得积分10
3秒前
joxes发布了新的文献求助10
4秒前
4秒前
Simon_chat完成签到,获得积分10
6秒前
传奇3应助BK采纳,获得10
6秒前
锵锵锵应助安静初瑶采纳,获得10
7秒前
我是老大应助Lusteri采纳,获得10
7秒前
9秒前
10秒前
浮游应助djbj2022采纳,获得10
11秒前
15秒前
优秀笑柳完成签到,获得积分10
15秒前
丘比特应助trussie采纳,获得10
15秒前
Cherish完成签到,获得积分10
16秒前
111完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
Owen应助马上飞上宇宙采纳,获得10
17秒前
善学以致用应助jc采纳,获得10
17秒前
19秒前
划分完成签到,获得积分10
19秒前
111发布了新的文献求助10
20秒前
fanfan完成签到,获得积分10
21秒前
周久完成签到 ,获得积分10
21秒前
ada发布了新的文献求助10
22秒前
小蘑菇应助小卢卢快闭嘴采纳,获得10
23秒前
彭tiantian完成签到 ,获得积分10
23秒前
25秒前
lucy发布了新的文献求助10
25秒前
27秒前
爱放屁的马邦德完成签到,获得积分10
27秒前
simdows发布了新的文献求助10
28秒前
Rain完成签到,获得积分10
29秒前
30秒前
lzcccccc完成签到,获得积分10
31秒前
ljc完成签到 ,获得积分10
32秒前
33秒前
科研通AI6应助纸箱采纳,获得10
34秒前
34秒前
original完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741