Similarity indicator and CG-CGAN prediction model for remaining useful life of rolling bearings

相似性(几何) 计算机科学 人工智能 模式识别(心理学) 图像(数学)
作者
Yang Liu,Binbin Dan,Cancan Yi,Li Shuhang,Yan Xuguo,Han Xiao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086107-086107 被引量:1
标识
DOI:10.1088/1361-6501/ad41f7
摘要

Abstract To tackle the challenges of performing early fault warning and improving the prediction accuracy for the remaining useful life (RUL) of rolling bearings, this paper proposes a similarity health indicator and a predictive model of CG-conditional generative adversarial network (CGAN), which relies on a CGAN that combines one-dimensional convolutional neural network (CNN) with a bidirectional gate recurrent unit (Bi-GRU). This framework provides a comprehensive theoretical foundation for RUL prediction of rolling bearings. The similarity health indicator allows for early fault warning of rolling bearings without expert knowledge. Within the CGAN framework, the inclusion of constraints guides the generation of samples in a more targeted manner. Additionally, the proposed CG-CGAN model incorporates Bi-GRU to consider both forward and backward information, thus improving the precision of RUL forecasting. Firstly, the similarity indicator between the vibration signals of the rolling bearing over its full life span and the standard vibration signals (healthy status) is calculated. This indicator helps to determine the early deterioration points of the rolling bearings. Secondly, the feature matrix composed of traditional health indicators and similarity health indicator, is utilized to train and test the proposed CG-CGAN model for RUL prediction. Finally, to corroborate the efficacy of the proposed method, two sets of real experiment data of rolling bearing accelerated life from the Intelligent Maintenance Systems (IMS) are utilized. Experimental findings substantiate that the proposed similarity health indicator offers early fault alerts and precisely delineates the performance diminution of the rolling bearing. Furthermore, the put-forward CG-CGAN model achieves high-precision RUL prediction of rolling bearing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk关闭了kk文献求助
1秒前
wwdd完成签到,获得积分10
1秒前
罗劲松完成签到,获得积分10
1秒前
科目三应助尚尚下下采纳,获得10
1秒前
xuzijian完成签到,获得积分20
1秒前
CipherSage应助yoyo采纳,获得10
1秒前
甜橙完成签到 ,获得积分10
2秒前
卡拉发布了新的文献求助10
2秒前
小星星bulingbuling完成签到,获得积分0
2秒前
热心冷亦发布了新的文献求助10
2秒前
111完成签到,获得积分10
3秒前
十月的天空完成签到,获得积分10
3秒前
加油加油完成签到,获得积分10
3秒前
ppxdd完成签到,获得积分10
4秒前
wanci应助小雨采纳,获得10
4秒前
854fycchjh完成签到,获得积分10
5秒前
Tiamo完成签到,获得积分20
5秒前
啊娴仔完成签到,获得积分10
5秒前
wyz完成签到,获得积分10
6秒前
xuxu完成签到,获得积分10
6秒前
不眠的人完成签到,获得积分10
6秒前
粗暴的平凡完成签到,获得积分10
7秒前
月月月鸟伟完成签到,获得积分10
7秒前
淡淡的豁完成签到,获得积分0
7秒前
淡淡的新之完成签到,获得积分10
8秒前
上好佳完成签到,获得积分10
8秒前
闻元杰完成签到,获得积分10
8秒前
sdfwsdfsd完成签到,获得积分10
8秒前
橘子汽水完成签到,获得积分10
8秒前
9秒前
七七完成签到,获得积分10
9秒前
LYL完成签到,获得积分10
9秒前
朴实初夏完成签到 ,获得积分10
9秒前
10秒前
Rainbow完成签到,获得积分10
10秒前
和谐成协完成签到,获得积分10
11秒前
11秒前
wendinfgmei完成签到,获得积分10
11秒前
12秒前
Ava应助guajiguaji采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950076
求助须知:如何正确求助?哪些是违规求助? 3495418
关于积分的说明 11077056
捐赠科研通 3225984
什么是DOI,文献DOI怎么找? 1783357
邀请新用户注册赠送积分活动 867663
科研通“疑难数据库(出版商)”最低求助积分说明 800855