亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Colorectal Coordinate-Driven Method for Colorectum and Colorectal Cancer Segmentation in Conventional CT Scans

结直肠癌 医学 计算机科学 人工智能 放射科 癌症 内科学
作者
Lisha Yao,Yingda Xia,Zhihong Chen,Suyun Li,Jiawen Yao,Dakai Jin,Yingying Liang,Jiatai Lin,Bingchao Zhao,Chu Han,Le Lü,Ling Zhang,Zaiyi Liu,Xin Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tnnls.2024.3386610
摘要

Automated colorectal cancer (CRC) segmentation in medical imaging is the key to achieving automation of CRC detection, staging, and treatment response monitoring. Compared with magnetic resonance imaging (MRI) and computed tomography colonography (CTC), conventional computed tomography (CT) has enormous potential because of its broad implementation, superiority for the hollow viscera (colon), and convenience without needing bowel preparation. However, the segmentation of CRC in conventional CT is more challenging due to the difficulties presenting with the unprepared bowel, such as distinguishing the colorectum from other structures with similar appearance and distinguishing the CRC from the contents of the colorectum. To tackle these challenges, we introduce DeepCRC-SL, the first automated segmentation algorithm for CRC and colorectum in conventional contrast-enhanced CT scans. We propose a topology-aware deep learning-based approach, which builds a novel 1-D colorectal coordinate system and encodes each voxel of the colorectum with a relative position along the coordinate system. We then induce an auxiliary regression task to predict the colorectal coordinate value of each voxel, aiming to integrate global topology into the segmentation network and thus improve the colorectum's continuity. Self-attention layers are utilized to capture global contexts for the coordinate regression task and enhance the ability to differentiate CRC and colorectum tissues. Moreover, a coordinate-driven self-learning (SL) strategy is introduced to leverage a large amount of unlabeled data to improve segmentation performance. We validate the proposed approach on a dataset including 227 labeled and 585 unlabeled CRC cases by fivefold cross-validation. Experimental results demonstrate that our method outperforms some recent related segmentation methods and achieves the segmentation accuracy in DSC for CRC of 0.669 and colorectum of 0.892, reaching to the performance (at 0.639 and 0.890, respectively) of a medical resident with two years of specialized CRC imaging fellowship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助gujianhua采纳,获得10
28秒前
42秒前
gujianhua发布了新的文献求助10
49秒前
gujianhua完成签到,获得积分10
1分钟前
jane123完成签到,获得积分10
1分钟前
Raunio完成签到,获得积分10
1分钟前
悠悠夏日长完成签到 ,获得积分10
1分钟前
1分钟前
jane123发布了新的文献求助200
1分钟前
早晚完成签到 ,获得积分10
1分钟前
坚强的广山完成签到,获得积分0
1分钟前
执着艳完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
852应助尼克采纳,获得10
2分钟前
Boren完成签到,获得积分10
3分钟前
猪猪猪完成签到,获得积分10
3分钟前
酷炫的善愁关注了科研通微信公众号
3分钟前
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
随机子应助科研通管家采纳,获得10
3分钟前
尼克发布了新的文献求助10
3分钟前
尼克完成签到,获得积分10
3分钟前
fengfenghao完成签到 ,获得积分10
4分钟前
归海一刀完成签到,获得积分10
4分钟前
4分钟前
Xxxudi发布了新的文献求助30
4分钟前
思源应助沉迷学习采纳,获得10
5分钟前
Xxxudi发布了新的文献求助10
5分钟前
jyy应助科研通管家采纳,获得30
5分钟前
华仔应助耍酷芙蓉采纳,获得10
5分钟前
牛少辉发布了新的文献求助10
6分钟前
烟花应助长不出的菌采纳,获得10
6分钟前
Daisykiller完成签到,获得积分20
6分钟前
香蕉觅云应助傅夜山采纳,获得10
6分钟前
6分钟前
6分钟前
Xxxudi发布了新的文献求助10
6分钟前
潇潇洒洒完成签到 ,获得积分10
6分钟前
Momo发布了新的文献求助10
6分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171530
求助须知:如何正确求助?哪些是违规求助? 2822407
关于积分的说明 7939160
捐赠科研通 2483017
什么是DOI,文献DOI怎么找? 1322894
科研通“疑难数据库(出版商)”最低求助积分说明 633795
版权声明 602627