An end-to-end lightweight model for grape and picking point simultaneous detection

最小边界框 稳健性(进化) 跳跃式监视 瓶颈 计算机科学 人工智能 点(几何) 目标检测 终点 像素 计算机视觉 模式识别(心理学) 图像(数学) 数学 实时计算 基因 嵌入式系统 生物化学 化学 几何学
作者
Ruzhun Zhao,Yuchang Zhu,Yuanhong Li
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:223: 174-188 被引量:36
标识
DOI:10.1016/j.biosystemseng.2022.08.013
摘要

Grape clusters and their picking point detection (GCPPD) are pivotal in the visual tasks of automatic grape harvesting. In recent years, much progress has been made in increasing the accuracy of GCPPD based on deep learning models. However, GCPPD still has many problems. First, it is inevitable that grape cluster detection requires complex models with many parameters. Second, the prior work on picking point detection can be summarised as the image processing methods using predefined hand-crafted features. This leads to a lack of robustness in the proposed algorithms. To address this, a scheme for the simultaneous detection of grape clusters and their picking points is explored. Due to the superiority of simultaneous detection, the model is constructed as an end-to-end network. Thus, a lightweight end-to-end model called YOLO-GP (YOLO-Grape and Picking points) is proposed. Specifically, YOLO-GP utilises a ghost bottleneck to reduce model parameters. Additionally, this model adds the prediction of picking points using the novel idea, that the picking point follows the bounding box. The Grape-PP (Grape-Picking Point) dataset for model training is constructed, which contains 360 grape images with 4517 grape cluster bounding boxes and picking points. The experiments show that the mean Average Precision (mAP) of grape cluster detection by YOLO-GP is 93.27% with a decrease in the number of weight parameters by at least 10%. The distance error of picking point detection is less than 40 pixels. In summary, YOLO-GP achieves the simultaneous detection of grape clusters and their picking points, and its performance is comparable to that of baseline models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EasonZ发布了新的文献求助10
1秒前
2秒前
充电宝应助QJQ采纳,获得10
2秒前
KK完成签到,获得积分10
3秒前
华仔应助赵坤煊采纳,获得10
3秒前
4秒前
夹心饼干完成签到,获得积分10
4秒前
仁爱发卡完成签到,获得积分20
4秒前
2号发布了新的文献求助10
6秒前
朱梦琳朱梦琳完成签到,获得积分10
6秒前
菜菜菜狗发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
8秒前
张萌完成签到,获得积分10
8秒前
充电宝应助X Xu采纳,获得30
8秒前
Blackrainbow应助Silence采纳,获得10
8秒前
9秒前
9秒前
云游归尘发布了新的文献求助10
9秒前
tomorrow827发布了新的文献求助30
9秒前
9秒前
TJC发布了新的文献求助10
10秒前
10秒前
赘婿应助俊逸晓绿采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
gjy发布了新的文献求助10
11秒前
YY发布了新的文献求助10
12秒前
12秒前
13秒前
白开心发布了新的文献求助10
13秒前
13秒前
饶天源发布了新的文献求助10
14秒前
汉堡包应助练大金采纳,获得30
14秒前
14秒前
exosome完成签到,获得积分20
14秒前
15秒前
小吕发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919