An end-to-end lightweight model for grape and picking point simultaneous detection

最小边界框 稳健性(进化) 跳跃式监视 瓶颈 计算机科学 人工智能 点(几何) 目标检测 终点 像素 计算机视觉 模式识别(心理学) 图像(数学) 数学 实时计算 基因 嵌入式系统 生物化学 化学 几何学
作者
Ruzhun Zhao,Yuchang Zhu,Yuanhong Li
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:223: 174-188 被引量:36
标识
DOI:10.1016/j.biosystemseng.2022.08.013
摘要

Grape clusters and their picking point detection (GCPPD) are pivotal in the visual tasks of automatic grape harvesting. In recent years, much progress has been made in increasing the accuracy of GCPPD based on deep learning models. However, GCPPD still has many problems. First, it is inevitable that grape cluster detection requires complex models with many parameters. Second, the prior work on picking point detection can be summarised as the image processing methods using predefined hand-crafted features. This leads to a lack of robustness in the proposed algorithms. To address this, a scheme for the simultaneous detection of grape clusters and their picking points is explored. Due to the superiority of simultaneous detection, the model is constructed as an end-to-end network. Thus, a lightweight end-to-end model called YOLO-GP (YOLO-Grape and Picking points) is proposed. Specifically, YOLO-GP utilises a ghost bottleneck to reduce model parameters. Additionally, this model adds the prediction of picking points using the novel idea, that the picking point follows the bounding box. The Grape-PP (Grape-Picking Point) dataset for model training is constructed, which contains 360 grape images with 4517 grape cluster bounding boxes and picking points. The experiments show that the mean Average Precision (mAP) of grape cluster detection by YOLO-GP is 93.27% with a decrease in the number of weight parameters by at least 10%. The distance error of picking point detection is less than 40 pixels. In summary, YOLO-GP achieves the simultaneous detection of grape clusters and their picking points, and its performance is comparable to that of baseline models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
积极一德发布了新的文献求助10
1秒前
洁净晓夏完成签到 ,获得积分10
1秒前
谦让的博完成签到,获得积分10
2秒前
2秒前
rxyxiaoyu完成签到,获得积分10
3秒前
4秒前
万能图书馆应助普鲁卡因采纳,获得10
4秒前
不败姑娘完成签到 ,获得积分10
4秒前
5秒前
明理雨莲完成签到,获得积分10
5秒前
危机的桐完成签到,获得积分10
5秒前
5秒前
个性的夜白完成签到,获得积分10
5秒前
Ryubot完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助20
6秒前
丘比特应助哈哈和采纳,获得10
7秒前
7秒前
8秒前
8秒前
憨憨发布了新的文献求助10
8秒前
xuan完成签到,获得积分10
8秒前
隐形曼青应助邢夏之采纳,获得10
8秒前
wangxr完成签到,获得积分10
9秒前
9秒前
Mic应助Wayne采纳,获得10
9秒前
Ryubot发布了新的文献求助10
9秒前
10秒前
xupt唐僧发布了新的文献求助10
10秒前
jj完成签到,获得积分10
10秒前
努力的欢欢完成签到,获得积分10
10秒前
AshleyD完成签到,获得积分10
10秒前
11秒前
斜阳完成签到 ,获得积分10
11秒前
风趣过客发布了新的文献求助20
12秒前
leo_zjm完成签到,获得积分10
12秒前
mTOR完成签到,获得积分10
12秒前
wangdongjiao发布了新的文献求助10
12秒前
yyy完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034