An end-to-end lightweight model for grape and picking point simultaneous detection

最小边界框 稳健性(进化) 跳跃式监视 瓶颈 计算机科学 人工智能 点(几何) 目标检测 终点 像素 计算机视觉 模式识别(心理学) 图像(数学) 数学 实时计算 基因 嵌入式系统 生物化学 化学 几何学
作者
Ruzhun Zhao,Yuchang Zhu,Yuanhong Li
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:223: 174-188 被引量:26
标识
DOI:10.1016/j.biosystemseng.2022.08.013
摘要

Grape clusters and their picking point detection (GCPPD) are pivotal in the visual tasks of automatic grape harvesting. In recent years, much progress has been made in increasing the accuracy of GCPPD based on deep learning models. However, GCPPD still has many problems. First, it is inevitable that grape cluster detection requires complex models with many parameters. Second, the prior work on picking point detection can be summarised as the image processing methods using predefined hand-crafted features. This leads to a lack of robustness in the proposed algorithms. To address this, a scheme for the simultaneous detection of grape clusters and their picking points is explored. Due to the superiority of simultaneous detection, the model is constructed as an end-to-end network. Thus, a lightweight end-to-end model called YOLO-GP (YOLO-Grape and Picking points) is proposed. Specifically, YOLO-GP utilises a ghost bottleneck to reduce model parameters. Additionally, this model adds the prediction of picking points using the novel idea, that the picking point follows the bounding box. The Grape-PP (Grape-Picking Point) dataset for model training is constructed, which contains 360 grape images with 4517 grape cluster bounding boxes and picking points. The experiments show that the mean Average Precision (mAP) of grape cluster detection by YOLO-GP is 93.27% with a decrease in the number of weight parameters by at least 10%. The distance error of picking point detection is less than 40 pixels. In summary, YOLO-GP achieves the simultaneous detection of grape clusters and their picking points, and its performance is comparable to that of baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Keyansunli发布了新的文献求助10
2秒前
cxzhao发布了新的文献求助10
2秒前
2秒前
李爱国应助啦啦啦采纳,获得10
2秒前
2秒前
123发布了新的文献求助10
3秒前
4秒前
4秒前
T1206182639发布了新的文献求助10
5秒前
Xdz完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
碧蓝千凡发布了新的文献求助10
7秒前
M7完成签到,获得积分10
7秒前
8秒前
echo发布了新的文献求助10
10秒前
独特伟泽发布了新的文献求助20
10秒前
irisjlj发布了新的文献求助10
11秒前
Lucas应助xdlongchem采纳,获得10
12秒前
碧蓝千凡完成签到,获得积分10
13秒前
柠檬汽水完成签到,获得积分10
13秒前
田様应助不想工作的小辉采纳,获得10
14秒前
15秒前
随大溜关注了科研通微信公众号
15秒前
12发布了新的文献求助10
15秒前
16秒前
e746700020发布了新的文献求助10
16秒前
尘烟完成签到,获得积分10
16秒前
四月完成签到 ,获得积分10
17秒前
17秒前
zzz完成签到,获得积分10
18秒前
20秒前
科目三应助热心犀牛采纳,获得10
20秒前
22秒前
共享精神应助LiuKangwei采纳,获得10
22秒前
23秒前
甜甜哩发布了新的文献求助10
25秒前
BowenShi完成签到 ,获得积分10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153169
求助须知:如何正确求助?哪些是违规求助? 2804457
关于积分的说明 7859169
捐赠科研通 2462280
什么是DOI,文献DOI怎么找? 1310725
科研通“疑难数据库(出版商)”最低求助积分说明 629377
版权声明 601794