An end-to-end lightweight model for grape and picking point simultaneous detection

最小边界框 稳健性(进化) 跳跃式监视 瓶颈 计算机科学 人工智能 点(几何) 目标检测 终点 像素 计算机视觉 模式识别(心理学) 图像(数学) 数学 实时计算 基因 嵌入式系统 生物化学 化学 几何学
作者
Ruzhun Zhao,Yuchang Zhu,Yuanhong Li
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:223: 174-188 被引量:36
标识
DOI:10.1016/j.biosystemseng.2022.08.013
摘要

Grape clusters and their picking point detection (GCPPD) are pivotal in the visual tasks of automatic grape harvesting. In recent years, much progress has been made in increasing the accuracy of GCPPD based on deep learning models. However, GCPPD still has many problems. First, it is inevitable that grape cluster detection requires complex models with many parameters. Second, the prior work on picking point detection can be summarised as the image processing methods using predefined hand-crafted features. This leads to a lack of robustness in the proposed algorithms. To address this, a scheme for the simultaneous detection of grape clusters and their picking points is explored. Due to the superiority of simultaneous detection, the model is constructed as an end-to-end network. Thus, a lightweight end-to-end model called YOLO-GP (YOLO-Grape and Picking points) is proposed. Specifically, YOLO-GP utilises a ghost bottleneck to reduce model parameters. Additionally, this model adds the prediction of picking points using the novel idea, that the picking point follows the bounding box. The Grape-PP (Grape-Picking Point) dataset for model training is constructed, which contains 360 grape images with 4517 grape cluster bounding boxes and picking points. The experiments show that the mean Average Precision (mAP) of grape cluster detection by YOLO-GP is 93.27% with a decrease in the number of weight parameters by at least 10%. The distance error of picking point detection is less than 40 pixels. In summary, YOLO-GP achieves the simultaneous detection of grape clusters and their picking points, and its performance is comparable to that of baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助心海采纳,获得10
刚刚
刚刚
刚刚
飞翔的发布了新的文献求助10
1秒前
柯善鹏完成签到,获得积分20
3秒前
周老八发布了新的文献求助10
3秒前
MOFS完成签到,获得积分10
4秒前
比巴卜发布了新的文献求助10
4秒前
杨裕农发布了新的文献求助10
6秒前
邓李梅发布了新的文献求助10
6秒前
所所应助冷艳的道天采纳,获得10
6秒前
希望天下0贩的0应助777采纳,获得10
7秒前
CipherSage应助博修采纳,获得10
9秒前
9秒前
Lucas应助周老八采纳,获得10
9秒前
DrY发布了新的文献求助10
11秒前
在水一方应助陌影采纳,获得10
11秒前
14秒前
小凉完成签到 ,获得积分10
15秒前
15秒前
17秒前
斯文败类应助YUYI采纳,获得10
17秒前
zho应助26岁顶级保安采纳,获得10
18秒前
大个应助顺顺利利采纳,获得10
19秒前
隐形曼青应助专注的语堂采纳,获得10
20秒前
meng发布了新的文献求助10
20秒前
qhy发布了新的文献求助10
21秒前
21秒前
777发布了新的文献求助10
21秒前
22秒前
大模型应助888采纳,获得10
23秒前
爆米花应助杨行肖采纳,获得10
23秒前
陌影发布了新的文献求助10
24秒前
领导范儿应助俭朴的乐巧采纳,获得10
25秒前
bubu完成签到,获得积分10
25秒前
zhenxing发布了新的文献求助10
25秒前
Ava应助精灵夜雨采纳,获得10
25秒前
26秒前
26秒前
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994039
求助须知:如何正确求助?哪些是违规求助? 3534593
关于积分的说明 11266046
捐赠科研通 3274516
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883238
科研通“疑难数据库(出版商)”最低求助积分说明 809719