An end-to-end lightweight model for grape and picking point simultaneous detection

最小边界框 稳健性(进化) 跳跃式监视 瓶颈 计算机科学 人工智能 点(几何) 目标检测 终点 像素 计算机视觉 模式识别(心理学) 图像(数学) 数学 实时计算 基因 嵌入式系统 生物化学 化学 几何学
作者
Ruzhun Zhao,Yuchang Zhu,Yuanhong Li
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:223: 174-188 被引量:36
标识
DOI:10.1016/j.biosystemseng.2022.08.013
摘要

Grape clusters and their picking point detection (GCPPD) are pivotal in the visual tasks of automatic grape harvesting. In recent years, much progress has been made in increasing the accuracy of GCPPD based on deep learning models. However, GCPPD still has many problems. First, it is inevitable that grape cluster detection requires complex models with many parameters. Second, the prior work on picking point detection can be summarised as the image processing methods using predefined hand-crafted features. This leads to a lack of robustness in the proposed algorithms. To address this, a scheme for the simultaneous detection of grape clusters and their picking points is explored. Due to the superiority of simultaneous detection, the model is constructed as an end-to-end network. Thus, a lightweight end-to-end model called YOLO-GP (YOLO-Grape and Picking points) is proposed. Specifically, YOLO-GP utilises a ghost bottleneck to reduce model parameters. Additionally, this model adds the prediction of picking points using the novel idea, that the picking point follows the bounding box. The Grape-PP (Grape-Picking Point) dataset for model training is constructed, which contains 360 grape images with 4517 grape cluster bounding boxes and picking points. The experiments show that the mean Average Precision (mAP) of grape cluster detection by YOLO-GP is 93.27% with a decrease in the number of weight parameters by at least 10%. The distance error of picking point detection is less than 40 pixels. In summary, YOLO-GP achieves the simultaneous detection of grape clusters and their picking points, and its performance is comparable to that of baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尺素寸心发布了新的文献求助10
刚刚
汉堡包应助wsd采纳,获得10
刚刚
希望天下0贩的0应助yuu采纳,获得10
1秒前
张张张完成签到 ,获得积分10
1秒前
希望天下0贩的0应助xty采纳,获得10
1秒前
2秒前
君临梅阿查完成签到,获得积分10
2秒前
科研通AI5应助陈丽媛采纳,获得10
2秒前
3秒前
zsz完成签到,获得积分10
4秒前
4秒前
4秒前
自由能发布了新的文献求助10
4秒前
5秒前
杨震发布了新的文献求助10
5秒前
5秒前
尺素寸心完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
善学以致用应助扎心采纳,获得10
7秒前
我是老大应助坚定铅笔采纳,获得10
7秒前
包觅风发布了新的文献求助10
7秒前
7秒前
19554133922发布了新的文献求助10
8秒前
8秒前
panpan111发布了新的文献求助10
8秒前
9秒前
9秒前
xm完成签到 ,获得积分10
9秒前
深情安青应助yw采纳,获得10
9秒前
光亮寒凝发布了新的文献求助10
9秒前
雷寒云发布了新的文献求助10
9秒前
温柔的老头完成签到,获得积分10
9秒前
9秒前
pluto应助happypig采纳,获得10
10秒前
林琳发布了新的文献求助10
10秒前
浮游应助自由能采纳,获得10
10秒前
11秒前
redflower完成签到,获得积分10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5108016
求助须知:如何正确求助?哪些是违规求助? 4317168
关于积分的说明 13449874
捐赠科研通 4146463
什么是DOI,文献DOI怎么找? 2272181
邀请新用户注册赠送积分活动 1274523
关于科研通互助平台的介绍 1212463