Development and validation of a potential risk area identification model for hand, foot, and mouth disease in metropolitan China

大都市区 中国 手足口病 鉴定(生物学) 口蹄疫 疾病 环境卫生 地理 医学 生物 病毒学 生态学 爆发 病理 考古
作者
Xu Guang,Yihua He,Zhigao Chen,Hong Yang,Yan Lu,Jun Meng,Yanpeng Cheng,Nixuan Chen,Qingqing Zhou,Rongxin He,Bin Zhu,Zhen Zhang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:371: 123064-123064 被引量:2
标识
DOI:10.1016/j.jenvman.2024.123064
摘要

Maximum Entropy model (MaxEnt), as a machine learning algorithm, is widely used to identify potential risk areas for emerging infectious diseases. However, MaxEnt usually overlooks the influence of the optimal selection of spatial grid scale and the optimal combination of factor information on identification accuracy. Furthermore, the internal level information of factors is closely related to the potential risk of disease occurrence but is rarely applied to enhance MaxEnt's accuracy. In this study, the Optimal Parameters-based Geographical Detectors-Information Value-MaxEnt (OPGD-IV-MaxEnt) was first proposed to identify the potential risk areas of hand, foot, and mouth disease (HFMD) in Shenzhen and compared its identification accuracy with that of OPGD-MaxEnt and MaxEnt. Firstly, the optimal grid scale and optimal combination of factor information were determined by OPGD. Secondly, the contributions of factors' internal level information to the potential risk of HFMD occurrence were quantified and incorporated by IV. Lastly, the spatial patterns of potential risk areas and their main driving factors were elucidated. Results showed that: (i) Area under the curve (AUC) of single MaxEnt were 0.638, 0.688, 0.763, 0.796, and 0.757 at 100 m, 250 m, 500 m, 750 m, and 1000 m scale, respectively, and 750 m were deemed the optimal scale. (ii) At the optimal scale, OPGD-IV-MaxEnt (AUC = 0.868) identified potential risk areas more accurately than MaxEnt (AUC = 0.796) and OPGD-MaxEnt (AUC = 0.827). (iii) Resident (r = 0.61, q = 0.39) and Market (r = 0.61, q = 0.36) were the primary factors affecting the identification of potential risk areas. (iv) Potential high-risk areas of HFMD were mainly distributed in northwestern, southwestern, and central Shenzhen, with dense resident and market distribution. Such insights are instrumental in devising targeted infection prevention and control measures for emerging infectious diseases and provide references for improving the identification accuracy of similar machine learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
呆萌芙蓉完成签到 ,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
NattyPoe应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
liuyq0501完成签到,获得积分0
6秒前
三三完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
Sleven完成签到,获得积分10
6秒前
帆帆帆发布了新的文献求助10
7秒前
TS6539完成签到,获得积分10
7秒前
优雅的千雁完成签到,获得积分10
8秒前
闫栋完成签到 ,获得积分10
9秒前
陶军辉完成签到 ,获得积分10
10秒前
tangyong完成签到,获得积分10
13秒前
甘sir完成签到 ,获得积分10
14秒前
一个漂流瓶完成签到,获得积分10
16秒前
包容明辉完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
19秒前
Perrylin718完成签到,获得积分10
20秒前
刻苦的三问完成签到,获得积分10
24秒前
gyyy完成签到,获得积分10
24秒前
科研通AI2S应助刚子采纳,获得10
26秒前
儒雅的焦完成签到,获得积分10
27秒前
不知道叫个啥完成签到 ,获得积分10
27秒前
娷静完成签到 ,获得积分10
31秒前
PHI完成签到 ,获得积分10
34秒前
mayberichard完成签到,获得积分10
34秒前
victory_liu完成签到,获得积分10
34秒前
俊逸的香萱完成签到 ,获得积分10
35秒前
敏感的海雪完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
40秒前
阔达的凡发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671559
求助须知:如何正确求助?哪些是违规求助? 4919724
关于积分的说明 15134997
捐赠科研通 4830375
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540671
关于科研通互助平台的介绍 1498971