Development and validation of a potential risk area identification model for hand, foot, and mouth disease in metropolitan China

大都市区 中国 手足口病 鉴定(生物学) 口蹄疫 疾病 环境卫生 地理 医学 生物 病毒学 生态学 爆发 病理 考古
作者
Xu Guang,Yihua He,Zhigao Chen,Hong Yang,Yan Lu,Jun Meng,Yanpeng Cheng,Nixuan Chen,Qingqing Zhou,Rongxin He,Bin Zhu,Zhen Zhang
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:371: 123064-123064 被引量:2
标识
DOI:10.1016/j.jenvman.2024.123064
摘要

Maximum Entropy model (MaxEnt), as a machine learning algorithm, is widely used to identify potential risk areas for emerging infectious diseases. However, MaxEnt usually overlooks the influence of the optimal selection of spatial grid scale and the optimal combination of factor information on identification accuracy. Furthermore, the internal level information of factors is closely related to the potential risk of disease occurrence but is rarely applied to enhance MaxEnt's accuracy. In this study, the Optimal Parameters-based Geographical Detectors-Information Value-MaxEnt (OPGD-IV-MaxEnt) was first proposed to identify the potential risk areas of hand, foot, and mouth disease (HFMD) in Shenzhen and compared its identification accuracy with that of OPGD-MaxEnt and MaxEnt. Firstly, the optimal grid scale and optimal combination of factor information were determined by OPGD. Secondly, the contributions of factors' internal level information to the potential risk of HFMD occurrence were quantified and incorporated by IV. Lastly, the spatial patterns of potential risk areas and their main driving factors were elucidated. Results showed that: (i) Area under the curve (AUC) of single MaxEnt were 0.638, 0.688, 0.763, 0.796, and 0.757 at 100 m, 250 m, 500 m, 750 m, and 1000 m scale, respectively, and 750 m were deemed the optimal scale. (ii) At the optimal scale, OPGD-IV-MaxEnt (AUC = 0.868) identified potential risk areas more accurately than MaxEnt (AUC = 0.796) and OPGD-MaxEnt (AUC = 0.827). (iii) Resident (r = 0.61, q = 0.39) and Market (r = 0.61, q = 0.36) were the primary factors affecting the identification of potential risk areas. (iv) Potential high-risk areas of HFMD were mainly distributed in northwestern, southwestern, and central Shenzhen, with dense resident and market distribution. Such insights are instrumental in devising targeted infection prevention and control measures for emerging infectious diseases and provide references for improving the identification accuracy of similar machine learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Gbn发布了新的文献求助10
1秒前
共享精神应助min采纳,获得10
1秒前
Infinity完成签到,获得积分10
1秒前
马到成功完成签到,获得积分10
1秒前
CTCTCT6完成签到,获得积分20
2秒前
激情的饼干完成签到,获得积分10
2秒前
have勇气完成签到,获得积分10
2秒前
田様应助高兴的咖啡豆采纳,获得10
2秒前
2秒前
Yuxiao完成签到,获得积分10
3秒前
3秒前
狗狗发布了新的文献求助10
3秒前
Michelangelo_微风完成签到,获得积分10
3秒前
自然鹭洋发布了新的文献求助10
3秒前
幸福五完成签到,获得积分10
3秒前
大模型应助mxx采纳,获得10
3秒前
3秒前
所所应助伍声痕采纳,获得10
4秒前
包若烟完成签到,获得积分20
4秒前
4秒前
4秒前
SSL发布了新的文献求助10
4秒前
拼搏语薇完成签到,获得积分10
4秒前
4秒前
仁爱发卡发布了新的文献求助10
4秒前
5秒前
斯文文龙完成签到,获得积分10
5秒前
5秒前
沐风完成签到,获得积分10
5秒前
科研通AI5应助guozizi采纳,获得10
6秒前
6秒前
7秒前
义气芷荷完成签到,获得积分10
7秒前
27发布了新的文献求助10
7秒前
研友_VZG7GZ应助黑粉头头采纳,获得10
7秒前
814791097完成签到,获得积分10
7秒前
所所应助cccc1111111采纳,获得10
7秒前
我叫XXXXXXX发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Social work values and ethics (6th ed.) 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5180491
求助须知:如何正确求助?哪些是违规求助? 4367921
关于积分的说明 13600823
捐赠科研通 4218743
什么是DOI,文献DOI怎么找? 2313774
邀请新用户注册赠送积分活动 1312578
关于科研通互助平台的介绍 1261128