Development and validation of a potential risk area identification model for hand, foot, and mouth disease in metropolitan China

大都市区 中国 手足口病 鉴定(生物学) 口蹄疫 疾病 环境卫生 地理 医学 生物 病毒学 生态学 爆发 病理 考古
作者
Xu Guang,Yihua He,Zhigao Chen,Hong Yang,Yan Lu,Jun Meng,Yanpeng Cheng,Nixuan Chen,Qingqing Zhou,Rongxin He,Bin Zhu,Zhen Zhang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:371: 123064-123064 被引量:2
标识
DOI:10.1016/j.jenvman.2024.123064
摘要

Maximum Entropy model (MaxEnt), as a machine learning algorithm, is widely used to identify potential risk areas for emerging infectious diseases. However, MaxEnt usually overlooks the influence of the optimal selection of spatial grid scale and the optimal combination of factor information on identification accuracy. Furthermore, the internal level information of factors is closely related to the potential risk of disease occurrence but is rarely applied to enhance MaxEnt's accuracy. In this study, the Optimal Parameters-based Geographical Detectors-Information Value-MaxEnt (OPGD-IV-MaxEnt) was first proposed to identify the potential risk areas of hand, foot, and mouth disease (HFMD) in Shenzhen and compared its identification accuracy with that of OPGD-MaxEnt and MaxEnt. Firstly, the optimal grid scale and optimal combination of factor information were determined by OPGD. Secondly, the contributions of factors' internal level information to the potential risk of HFMD occurrence were quantified and incorporated by IV. Lastly, the spatial patterns of potential risk areas and their main driving factors were elucidated. Results showed that: (i) Area under the curve (AUC) of single MaxEnt were 0.638, 0.688, 0.763, 0.796, and 0.757 at 100 m, 250 m, 500 m, 750 m, and 1000 m scale, respectively, and 750 m were deemed the optimal scale. (ii) At the optimal scale, OPGD-IV-MaxEnt (AUC = 0.868) identified potential risk areas more accurately than MaxEnt (AUC = 0.796) and OPGD-MaxEnt (AUC = 0.827). (iii) Resident (r = 0.61, q = 0.39) and Market (r = 0.61, q = 0.36) were the primary factors affecting the identification of potential risk areas. (iv) Potential high-risk areas of HFMD were mainly distributed in northwestern, southwestern, and central Shenzhen, with dense resident and market distribution. Such insights are instrumental in devising targeted infection prevention and control measures for emerging infectious diseases and provide references for improving the identification accuracy of similar machine learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Mona完成签到 ,获得积分10
刚刚
高高烙完成签到,获得积分10
1秒前
2秒前
贤惠的醉蝶完成签到,获得积分20
2秒前
晓珈越完成签到,获得积分10
2秒前
斯文败类应助林大大采纳,获得10
3秒前
3秒前
zwy应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
葡萄成熟完成签到,获得积分10
3秒前
共享精神应助科研通管家采纳,获得10
4秒前
贝贝应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
大咸鱼发布了新的文献求助10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
CUIYU应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
丰知然应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
5秒前
Airblew发布了新的文献求助30
6秒前
核桃发布了新的文献求助10
6秒前
ru发布了新的文献求助10
6秒前
8秒前
8秒前
一种信仰完成签到 ,获得积分10
9秒前
CipherSage应助叽里呱啦采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588775
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14788654
捐赠科研通 4626241
什么是DOI,文献DOI怎么找? 2531957
邀请新用户注册赠送积分活动 1500530
关于科研通互助平台的介绍 1468329