Development and validation of a potential risk area identification model for hand, foot, and mouth disease in metropolitan China

大都市区 中国 手足口病 鉴定(生物学) 口蹄疫 疾病 环境卫生 地理 医学 生物 病毒学 生态学 爆发 病理 考古
作者
Xu Guang,Yihua He,Zhigao Chen,Hong Yang,Yan Lu,Jun Meng,Yanpeng Cheng,Nixuan Chen,Qingqing Zhou,Rongxin He,Bin Zhu,Zhen Zhang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:371: 123064-123064 被引量:2
标识
DOI:10.1016/j.jenvman.2024.123064
摘要

Maximum Entropy model (MaxEnt), as a machine learning algorithm, is widely used to identify potential risk areas for emerging infectious diseases. However, MaxEnt usually overlooks the influence of the optimal selection of spatial grid scale and the optimal combination of factor information on identification accuracy. Furthermore, the internal level information of factors is closely related to the potential risk of disease occurrence but is rarely applied to enhance MaxEnt's accuracy. In this study, the Optimal Parameters-based Geographical Detectors-Information Value-MaxEnt (OPGD-IV-MaxEnt) was first proposed to identify the potential risk areas of hand, foot, and mouth disease (HFMD) in Shenzhen and compared its identification accuracy with that of OPGD-MaxEnt and MaxEnt. Firstly, the optimal grid scale and optimal combination of factor information were determined by OPGD. Secondly, the contributions of factors' internal level information to the potential risk of HFMD occurrence were quantified and incorporated by IV. Lastly, the spatial patterns of potential risk areas and their main driving factors were elucidated. Results showed that: (i) Area under the curve (AUC) of single MaxEnt were 0.638, 0.688, 0.763, 0.796, and 0.757 at 100 m, 250 m, 500 m, 750 m, and 1000 m scale, respectively, and 750 m were deemed the optimal scale. (ii) At the optimal scale, OPGD-IV-MaxEnt (AUC = 0.868) identified potential risk areas more accurately than MaxEnt (AUC = 0.796) and OPGD-MaxEnt (AUC = 0.827). (iii) Resident (r = 0.61, q = 0.39) and Market (r = 0.61, q = 0.36) were the primary factors affecting the identification of potential risk areas. (iv) Potential high-risk areas of HFMD were mainly distributed in northwestern, southwestern, and central Shenzhen, with dense resident and market distribution. Such insights are instrumental in devising targeted infection prevention and control measures for emerging infectious diseases and provide references for improving the identification accuracy of similar machine learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助zuoyou采纳,获得10
1秒前
ymx完成签到,获得积分10
1秒前
冷傲夏槐发布了新的文献求助10
1秒前
2秒前
尤之尤之完成签到,获得积分10
2秒前
科研通AI6.1应助陶l采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
wuming完成签到,获得积分10
4秒前
小蘑菇应助wang采纳,获得10
4秒前
4秒前
4秒前
潇潇完成签到,获得积分10
6秒前
所所应助眼睛大的迎梦采纳,获得10
6秒前
华仔应助GRX1110采纳,获得10
7秒前
Mikey_Teng完成签到,获得积分20
8秒前
vikoel完成签到,获得积分10
8秒前
9秒前
饮汽水发布了新的文献求助10
9秒前
西西完成签到,获得积分10
9秒前
Mikey_Teng发布了新的文献求助10
10秒前
10秒前
12秒前
曹能豪发布了新的文献求助10
13秒前
浩然完成签到,获得积分10
13秒前
13秒前
所所应助feisun采纳,获得10
14秒前
14秒前
想人陪的万言完成签到,获得积分10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
尉迟希望应助科研通管家采纳,获得10
15秒前
东明完成签到,获得积分10
15秒前
子车茗应助科研通管家采纳,获得30
15秒前
Orange应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得30
15秒前
平淡爆米花完成签到,获得积分10
15秒前
子车茗应助科研通管家采纳,获得30
15秒前
共享精神应助科研通管家采纳,获得30
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146