作者
Xu Guang,Yihua He,Zhigao Chen,Hong Yang,Yan Lu,Jun Meng,Yanpeng Cheng,Nixuan Chen,Qingqing Zhou,Rongxin He,Bin Zhu,Shouxin Zhang
摘要
Maximum Entropy model (MaxEnt), as a machine learning algorithm, is widely used to identify potential risk areas for emerging infectious diseases. However, MaxEnt usually overlooks the influence of the optimal selection of spatial grid scale and the optimal combination of factor information on identification accuracy. Furthermore, the internal level information of factors is closely related to the potential risk of disease occurrence but is rarely applied to enhance MaxEnt's accuracy. In this study, the Optimal Parameters-based Geographical Detectors-Information Value-MaxEnt (OPGD-IV-MaxEnt) was first proposed to identify the potential risk areas of hand, foot, and mouth disease (HFMD) in Shenzhen and compared its identification accuracy with that of OPGD-MaxEnt and MaxEnt. Firstly, the optimal grid scale and optimal combination of factor information were determined by OPGD. Secondly, the contributions of factors' internal level information to the potential risk of HFMD occurrence were quantified and incorporated by IV. Lastly, the spatial patterns of potential risk areas and their main driving factors were elucidated. Results showed that: (i) Area under the curve (AUC) of single MaxEnt were 0.638, 0.688, 0.763, 0.796, and 0.757 at 100 m, 250 m, 500 m, 750 m, and 1000 m scale, respectively, and 750 m were deemed the optimal scale. (ii) At the optimal scale, OPGD-IV-MaxEnt (AUC = 0.868) identified potential risk areas more accurately than MaxEnt (AUC = 0.796) and OPGD-MaxEnt (AUC = 0.827). (iii) Resident (r = 0.61, q = 0.39) and Market (r = 0.61, q = 0.36) were the primary factors affecting the identification of potential risk areas. (iv) Potential high-risk areas of HFMD were mainly distributed in northwestern, southwestern, and central Shenzhen, with dense resident and market distribution. Such insights are instrumental in devising targeted infection prevention and control measures for emerging infectious diseases and provide references for improving the identification accuracy of similar machine learning algorithms.