Development and validation of a potential risk area identification model for hand, foot, and mouth disease in metropolitan China

大都市区 中国 手足口病 鉴定(生物学) 口蹄疫 疾病 环境卫生 地理 医学 生物 病毒学 生态学 爆发 病理 考古
作者
Xu Guang,Yihua He,Zhigao Chen,Hong Yang,Yan Lu,Jun Meng,Yanpeng Cheng,Nixuan Chen,Qingqing Zhou,Rongxin He,Bin Zhu,Zhen Zhang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:371: 123064-123064 被引量:2
标识
DOI:10.1016/j.jenvman.2024.123064
摘要

Maximum Entropy model (MaxEnt), as a machine learning algorithm, is widely used to identify potential risk areas for emerging infectious diseases. However, MaxEnt usually overlooks the influence of the optimal selection of spatial grid scale and the optimal combination of factor information on identification accuracy. Furthermore, the internal level information of factors is closely related to the potential risk of disease occurrence but is rarely applied to enhance MaxEnt's accuracy. In this study, the Optimal Parameters-based Geographical Detectors-Information Value-MaxEnt (OPGD-IV-MaxEnt) was first proposed to identify the potential risk areas of hand, foot, and mouth disease (HFMD) in Shenzhen and compared its identification accuracy with that of OPGD-MaxEnt and MaxEnt. Firstly, the optimal grid scale and optimal combination of factor information were determined by OPGD. Secondly, the contributions of factors' internal level information to the potential risk of HFMD occurrence were quantified and incorporated by IV. Lastly, the spatial patterns of potential risk areas and their main driving factors were elucidated. Results showed that: (i) Area under the curve (AUC) of single MaxEnt were 0.638, 0.688, 0.763, 0.796, and 0.757 at 100 m, 250 m, 500 m, 750 m, and 1000 m scale, respectively, and 750 m were deemed the optimal scale. (ii) At the optimal scale, OPGD-IV-MaxEnt (AUC = 0.868) identified potential risk areas more accurately than MaxEnt (AUC = 0.796) and OPGD-MaxEnt (AUC = 0.827). (iii) Resident (r = 0.61, q = 0.39) and Market (r = 0.61, q = 0.36) were the primary factors affecting the identification of potential risk areas. (iv) Potential high-risk areas of HFMD were mainly distributed in northwestern, southwestern, and central Shenzhen, with dense resident and market distribution. Such insights are instrumental in devising targeted infection prevention and control measures for emerging infectious diseases and provide references for improving the identification accuracy of similar machine learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助猪猪hero采纳,获得50
刚刚
1秒前
1秒前
chai发布了新的文献求助10
1秒前
搜集达人应助watsonhe采纳,获得10
1秒前
希望天下0贩的0应助Sans.采纳,获得10
1秒前
Orange应助yuan采纳,获得10
1秒前
Patrick完成签到 ,获得积分10
1秒前
tt完成签到,获得积分10
2秒前
2秒前
理想国的过客完成签到,获得积分10
2秒前
2秒前
2秒前
南风发布了新的文献求助10
3秒前
科研通AI6应助专注钢笔采纳,获得10
4秒前
4秒前
张远幸发布了新的文献求助10
5秒前
阔达的秀发完成签到,获得积分10
6秒前
6秒前
桐桐应助starry采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
朴素的向雁完成签到,获得积分10
7秒前
樱桃发布了新的文献求助10
8秒前
荷包蛋完成签到,获得积分10
8秒前
Liu完成签到,获得积分10
8秒前
少国发布了新的文献求助10
8秒前
实验一定顺完成签到,获得积分10
8秒前
科研通AI6应助xuan采纳,获得10
9秒前
yan完成签到,获得积分10
9秒前
小蘑菇应助xuan采纳,获得10
9秒前
科研通AI6应助xuan采纳,获得10
9秒前
科研通AI2S应助bio采纳,获得10
9秒前
大个应助xuan采纳,获得30
9秒前
liuliu应助xuan采纳,获得10
9秒前
隐形曼青应助xuan采纳,获得10
9秒前
Twonej应助xuan采纳,获得30
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652169
求助须知:如何正确求助?哪些是违规求助? 4786896
关于积分的说明 15058821
捐赠科研通 4810805
什么是DOI,文献DOI怎么找? 2573410
邀请新用户注册赠送积分活动 1529283
关于科研通互助平台的介绍 1488184