Image Quality Assessment of a Deep Learning–Based Automatic Bone Removal Algorithm for Cervical CTA

医学 算法 颈动脉 图像质量 狭窄 放射科 外科 人工智能 图像(数学) 计算机科学
作者
Yuanyuan Cui,Rongrong Fan,Yuxin Cheng,An Sun,Zhoubing Xu,Michael Schwier,Linfeng Li,Shushen Lin,Max Schöebinger,Yiyong Xiao,Shiyuan Liu
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:48 (6): 998-1007
标识
DOI:10.1097/rct.0000000000001637
摘要

Background The present study aims to evaluate the postprocessing image quality of a deep-learning (DL)–based automatic bone removal algorithm in the real clinical practice for cervical computed tomography angiography (CTA). Materials and Methods A total of 100 patients (31 females, 61.4 ± 12.4 years old) who had performed cervical CTA from January 2022 to July 2022 were included retrospectively. Three different types of scanners were used. Ipsilateral cervical artery was divided into 10 segments. The performance of the DL algorithm and conventional algorithm in terms of bone removal and vascular integrity was independently evaluated by two radiologists for each segment. The difference in the performance between the two algorithms was compared. Inter- and intrarater consistency were assessed, and the correlation between the degree of carotid artery stenosis and the rank of bone removal and vascular integrity was analyzed. Results Significant differences were observed in the rankings of bone removal and vascular integrity between the two algorithms on most segments on both sides. Compared to DL algorithm, the conventional algorithm showed a higher correlation between the degree of carotid artery stenosis and vascular integrity ( r = −0.264 vs r = −0.180). The inter- and intrarater consistency of DL algorithm were found to be higher than or equal to those of conventional algorithm. Conclusions The DL algorithm for bone removal in cervical CTA demonstrated significantly better performance than conventional postprocessing method, particularly in the segments with complex anatomical structures and adjacent to bone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaoguai完成签到 ,获得积分10
1秒前
zho应助西柚西柚采纳,获得10
1秒前
2秒前
华仔应助hu采纳,获得10
2秒前
2秒前
野渡逢舟发布了新的文献求助10
2秒前
2秒前
lll完成签到,获得积分10
2秒前
3秒前
谷曼婷发布了新的文献求助10
3秒前
3秒前
luf完成签到,获得积分10
3秒前
4秒前
快乐的废物完成签到,获得积分10
4秒前
4秒前
king完成签到,获得积分10
5秒前
5秒前
joy完成签到,获得积分10
5秒前
5秒前
惊蛰完成签到,获得积分10
5秒前
Hommand_藏山完成签到,获得积分10
5秒前
英语发布了新的文献求助10
6秒前
大个应助青菜粥采纳,获得10
6秒前
一路嘿嘿完成签到,获得积分10
6秒前
ww完成签到,获得积分20
6秒前
LM发布了新的文献求助30
6秒前
6秒前
研友_VZG7GZ应助张张采纳,获得10
6秒前
6秒前
顾矜应助康zai采纳,获得10
6秒前
7秒前
万能图书馆应助kkk采纳,获得10
7秒前
fan发布了新的文献求助10
8秒前
小红要发文章哦完成签到,获得积分10
8秒前
8秒前
8秒前
meng完成签到,获得积分10
8秒前
一路嘿嘿发布了新的文献求助30
8秒前
Andy_Cheung应助喜看财经采纳,获得10
8秒前
高分求助中
All the Birds of the World 2000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3717212
求助须知:如何正确求助?哪些是违规求助? 3263771
关于积分的说明 9931690
捐赠科研通 2977842
什么是DOI,文献DOI怎么找? 1633051
邀请新用户注册赠送积分活动 774837
科研通“疑难数据库(出版商)”最低求助积分说明 745215