已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Light‐Driven Self‐Recruitment of Biomimetic Semiconducting Polymer Nanoparticles for Precise Tumor Vascular Disruption

光热治疗 癌症研究 光热效应 材料科学 肿瘤微环境 纳米技术 医学 肿瘤细胞
作者
Haoze Li,Sensen Zhou,Min Wu,Rui Qu,Xin Wang,Weizhi Chen,Yuyan Jiang,Xiqun Jiang,Zhen Xu
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (24) 被引量:25
标识
DOI:10.1002/adma.202210920
摘要

Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off-target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA-free biomimetic semiconducting polymer nanoparticle (SPNP ) is herein reported for precise tumor vascular disruption through two-stage light manipulation. SPNP consists of a semiconducting polymer nanoparticle as the photothermal agent camouflaged with platelet membranes that specifically target disrupted vasculature. Upon the first photoirradiation, SPNP administered in vivo generates mild hyperthermia to trigger tumor vascular hemorrhage, which activates the coagulation cascade and recruits more SPNP to injured blood vessels. Such enhanced tumor vascular targeting of photothermal agents enables intense hyperthermia to destroy the tumor vasculature during the second photoirradiation, leading to complete tumor eradication and efficient metastasis inhibition. Intriguingly, the mechanism study reveals that this vascular disruption strategy alleviates splenomegaly and reverses the immunosuppressive tumor microenvironment by reducing myeloid-derived suppressor cells. Therefore, this study not only illustrates a light-driven self-recruitment strategy to enhance tumor vascular disruption via a single dose of biomimetic therapeutics but also deciphers the immunotherapeutic role of vascular disruption therapy that is conducive to clinical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归海一刀发布了新的文献求助10
1秒前
1秒前
Andy完成签到,获得积分10
3秒前
4秒前
GLFCX完成签到,获得积分10
6秒前
8秒前
9秒前
王吉吉关注了科研通微信公众号
10秒前
13秒前
14秒前
哼哼哈嘿发布了新的文献求助10
14秒前
xgn完成签到,获得积分10
17秒前
布吉岛发布了新的文献求助10
18秒前
爆米花应助小巧的花生采纳,获得10
18秒前
归海一刀完成签到,获得积分10
18秒前
自由山槐发布了新的文献求助10
20秒前
周星星发布了新的文献求助10
20秒前
忆彡发布了新的文献求助10
21秒前
李健的小迷弟应助Rocky采纳,获得10
29秒前
30秒前
Owen应助自由山槐采纳,获得10
31秒前
34秒前
研友_VZG7GZ应助小周采纳,获得10
35秒前
37秒前
彭于晏应助11采纳,获得10
38秒前
39秒前
能干的雨发布了新的文献求助20
40秒前
41秒前
42秒前
再夕予发布了新的文献求助10
42秒前
43秒前
43秒前
等豆宝儿发布了新的文献求助10
43秒前
小蘑菇应助CATH采纳,获得10
44秒前
45秒前
烜66发布了新的文献求助10
47秒前
48秒前
小周发布了新的文献求助10
49秒前
大表锅完成签到,获得积分10
50秒前
54秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736516
求助须知:如何正确求助?哪些是违规求助? 3280362
关于积分的说明 10019382
捐赠科研通 2996986
什么是DOI,文献DOI怎么找? 1644338
邀请新用户注册赠送积分活动 781922
科研通“疑难数据库(出版商)”最低求助积分说明 749641