骨水泥
水泥
纳米-
化学
生物利用度
材料科学
药理学
医学
复合材料
作者
Archita Gupta,Sanjay Mehta,Irfan Qayoom,Sneha Gupta,Sneha Singh,Ashok Kumar
标识
DOI:10.1016/j.ijpharm.2023.123110
摘要
Developing biofunctionalized ceramic bone substitutes with phytobioactives for their sustained delivery is highly desired to enhance the osteo-active potential of ceramic bone substitutes, reduce the systemic toxicity of synthetic drugs, and increase the bioavailability of phytobioactives. The present work highlights the local delivery of phytobioactives of Cissus quadrangularis (CQ) through nano-hydroxyapatite (nHAP) based ceramic nano-cement. The phytoconstituent profiling represented the optimized CQ fraction to be rich in osteogenic polyphenols and flavonoids like quercetin, resveratrol, and their glucosides. Further, CQ phytobioactives-based formulation was biocompatible, increased bone formation, calcium deposition, proliferation, and migration of cells with simultaneous alleviation of cellular oxidative stress. In the in vivo critical-sized bone defect model, enhanced formation of highly mineralized tissue (BV mm3) in CQ phytobioactives functionalized nano-cement (10.5 ± 2 mm3) were observed compared to the control group (6.5 ± 1.2 mm3). Moreover, the addition of CQ phytobioactives to the bone nano-cement increased the fractional bone volume (BV/TV%) to 21 ± 4.2% compared to 13.1 ± 2.5% in non-functionalized nano-cement. The results demonstrated nHAP-based nano-cement as a carrier for phytobioactives which could be a promising approach for neo-bone formation in different bone defect conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI