亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Secure and Efficient Continuous Learning Model for Traffic Flow Prediction

计算机科学 时间戳 流量(计算机网络) 自适应采样 实时计算 交通生成模型 数据挖掘 采样(信号处理) 智能交通系统 云计算 人工智能 机器学习 计算机网络 工程类 统计 土木工程 数学 滤波器(信号处理) 蒙特卡罗方法 计算机视觉 操作系统
作者
Junqing Le,Di Zhang,Fan Yang,Tao Xiang,Xiaofeng Liao
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsm.2024.3407959
摘要

High-performance traffic flow prediction models provide reliable future road information and optimize traffic navigation systems. However, the traffic data used for model learning contains lots of private information, and the existing privacy-preserving strategies always reduce the accuracy of prediction models. Besides, an effective traffic flow prediction model needs to be continuously and rapidly updated to adapt to dynamic changes in the traffic environment. Thus, we propose a Secure and Efficient Continuous Learning Model (SE-CLM) based on broad learning, spatial correlation, and adaptive sampling processing techniques to realize accurate and efficient traffic flow prediction under strong privacy protection. Specifically, SE-CLM is constructed on the broad network architecture to enable fast and continuous model training. This model is trained on a cloud server by combining the spatial correlation of traffic flows, to achieve accurate traffic flow prediction. Besides, an adaptive sampling strategy is designed to further improve the prediction accuracy of the model under the protection with differential privacy (DP), where the budget allocation for DP is optimized by adaptively sampling traffic flows with different timestamps for noise perturbation processing. Furthermore, the experimental simulations are conducted in real vehicular mobility datasets. The experimental results show that the designed spatial-based SE-CLM achieve more accurate and efficient traffic flow prediction than those of the other existing schemes. The adaptive sampling strategy not only significantly reduces the DP-noise added in traffic flows but also a 20% reduction in communication volume compared to other strategies. Finally, the security analysis also verifies that SE-CLM satisfies w-event ε-DP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的鱼完成签到 ,获得积分10
刚刚
狐狸萌萌哒完成签到 ,获得积分10
9秒前
欢欢完成签到,获得积分10
12秒前
14秒前
14秒前
spark810应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
18秒前
spark810应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得30
18秒前
吴炜华发布了新的文献求助10
20秒前
晴朗发布了新的文献求助10
22秒前
可爱的函函应助sping采纳,获得10
23秒前
27秒前
空岛与影发布了新的文献求助30
34秒前
吴炜华发布了新的文献求助10
37秒前
39秒前
充电宝应助22222采纳,获得30
45秒前
空岛与影完成签到,获得积分10
50秒前
54秒前
56秒前
22222发布了新的文献求助30
1分钟前
菲莳完成签到 ,获得积分10
1分钟前
热舞特完成签到,获得积分10
1分钟前
吴炜华完成签到,获得积分10
1分钟前
1分钟前
街霸发布了新的文献求助10
1分钟前
凡yeah完成签到,获得积分10
1分钟前
凡yeah发布了新的文献求助10
1分钟前
1分钟前
棠真完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
Jolly发布了新的文献求助10
2分钟前
拼搏小丸子完成签到 ,获得积分10
2分钟前
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
pin发布了新的文献求助10
2分钟前
xzn发布了新的文献求助10
2分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056425
求助须知:如何正确求助?哪些是违规求助? 2713046
关于积分的说明 7434315
捐赠科研通 2357999
什么是DOI,文献DOI怎么找? 1249197
科研通“疑难数据库(出版商)”最低求助积分说明 606972
版权声明 596195