fMRI and EEG Predictors of Dynamic Decision Parameters during Human Reinforcement Learning

强化学习 心理学 丘脑底核 钢筋 脑电图 认知心理学 人工智能 形状记忆合金* 计算机科学 神经科学 社会心理学 脑深部刺激 病理 算法 医学 疾病 帕金森病
作者
Michael J. Frank,Chris Gagne,Erika Nyhus,Sean E. Masters,Thomas V. Wiecki,James F. Cavanagh,David Badre
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:35 (2): 485-494 被引量:242
标识
DOI:10.1523/jneurosci.2036-14.2015
摘要

What are the neural dynamics of choice processes during reinforcement learning? Two largely separate literatures have examined dynamics of reinforcement learning (RL) as a function of experience but assuming a static choice process, or conversely, the dynamics of choice processes in decision making but based on static decision values. Here we show that human choice processes during RL are well described by a drift diffusion model (DDM) of decision making in which the learned trial-by-trial reward values are sequentially sampled, with a choice made when the value signal crosses a decision threshold. Moreover, simultaneous fMRI and EEG recordings revealed that this decision threshold is not fixed across trials but varies as a function of activity in the subthalamic nucleus (STN) and is further modulated by trial-by-trial measures of decision conflict and activity in the dorsomedial frontal cortex (pre-SMA BOLD and mediofrontal theta in EEG). These findings provide converging multimodal evidence for a model in which decision threshold in reward-based tasks is adjusted as a function of communication from pre-SMA to STN when choices differ subtly in reward values, allowing more time to choose the statistically more rewarding option.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于彦祖应助贝肯妮采纳,获得30
1秒前
充电宝应助ziyue采纳,获得30
1秒前
Akim应助漂亮的松思采纳,获得10
2秒前
3秒前
鸣清完成签到,获得积分10
3秒前
月光完成签到,获得积分10
3秒前
香蕉觅云应助小田采纳,获得10
3秒前
豆壳儿完成签到 ,获得积分10
3秒前
怕黑的凌柏完成签到,获得积分10
4秒前
可爱的函函应助淡定如之采纳,获得10
4秒前
ywzwszl完成签到,获得积分10
4秒前
4秒前
酷酷念瑶发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
Flaxy发布了新的文献求助10
5秒前
5秒前
爱静静应助小明采纳,获得10
6秒前
日月发布了新的文献求助10
6秒前
可爱凡波完成签到,获得积分10
7秒前
zry发布了新的文献求助10
7秒前
7秒前
8秒前
研友_VZG7GZ应助nanxi88采纳,获得10
8秒前
tiantian8715发布了新的文献求助10
9秒前
9秒前
嘉敏完成签到,获得积分10
9秒前
daodao发布了新的文献求助10
9秒前
123应助心灵美的毛巾采纳,获得20
9秒前
筒子完成签到,获得积分20
9秒前
你好晚安发布了新的文献求助10
10秒前
10秒前
SunYilin发布了新的文献求助10
11秒前
CLX。完成签到,获得积分10
11秒前
今后应助日月采纳,获得10
12秒前
Gj完成签到,获得积分10
12秒前
Ava应助简隋英采纳,获得10
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307830
求助须知:如何正确求助?哪些是违规求助? 2941398
关于积分的说明 8503161
捐赠科研通 2615878
什么是DOI,文献DOI怎么找? 1429249
科研通“疑难数据库(出版商)”最低求助积分说明 663679
邀请新用户注册赠送积分活动 648650