纳米晶
材料科学
铁磁性
双锥
金属
结晶学
离子
磁性
六方晶系
磁矩
纳米技术
作者
Rongmei Liu,Yuanwen Jiang,Hao Fan,Qingyi Lu,Wei Du,Feng Gao
标识
DOI:10.1002/chem.201201108
摘要
In this study, quasi-cubic and hexagonal bipyramid α-Fe(2)O(3) polyhedrons with high-index facets exposed were controllably synthesized by applying metal ions Zn(2+) or Cu(2+) as structure-directing agents. The growth of the α-Fe(2)O(3) nanostructures with high-index facets were induced by metal ions without the addition of any other surfactants. The quasi-cubic form controlled by Zn(2+) looks like a cube but has an angle of approximately 86° bound by (012), (10-2), and (1-12) facets, whereas the hexagonal bipyramid form controlled by Cu(2+) has a sixfold axis bound by {012} facets. Magnetic measurements confirm that these two kinds of nanocrystals display shape- and surface-dependent magnetic behaviors. The hexagonal bipyramid iron oxide nanocrystals show a lower Morin transition temperature of 240 K and might be spin-canted ferromagnetically controlled at room temperature, and the ferromagnetism disappears at low temperature. The quasi-cubic nanocrystals have a splitting between FC curve and ZFC curve from the highest experimental temperature and no Morin transformation occurs; this indicates that they would be defect ferromagnetically controlled at low temperature. The reported metal-ion-directing technique could provide a universal method for shape- and surface-controlled synthesis of nanocrystals with high-index facets exposed.
科研通智能强力驱动
Strongly Powered by AbleSci AI