In this work, we developed a simple hydrothermal method toward the fabrication of TiO 2 /Bi[Formula: see text]Mo[Formula: see text]O[Formula: see text] heterostructure, which had superior photocatalytic performance for degrading of RhB under visible light irradiation. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM), UV-Vis diffuse reflectance spectroscopy (DRS) and photoelectrochemical measurements. The optimal composite with 15[Formula: see text]wt.% TiO 2 /Bi[Formula: see text]Mo[Formula: see text]O[Formula: see text] (TBMO3) exhibits a much higher photocatalytic activity than that of Bi[Formula: see text]Mo[Formula: see text]O[Formula: see text] and P25 by degradation of RhB under visible light irradiation within 20[Formula: see text]min. The enhanced performance of TBMO 3 is predominantly attributed to the synergistic effect both in the higher surface area and the improved separation of photogenerated charge carriers between the two semiconductors. Recycling experiments indicated that TiO 2 /Bi[Formula: see text]Mo[Formula: see text]O[Formula: see text] photocatalysts had excellent cycle performance and stability. The photocatalytic mechanism of nanocomposite photocatalysts was proposed, which is confirmed by the active species trapping experiments and photoluminescence tests.