红色毛癣菌
菌丝体
蛋白质组
生物
微生物学
乙酰化
生物化学
次生代谢
溴尿嘧啶
基因
植物
生物合成
抗真菌
作者
Xingye Xu,Tao Liu,Jian Yang,Lihong Chen,Бо Лю,Li Wang,Qi Jin
标识
DOI:10.1021/acs.jproteome.7b00793
摘要
Trichophyton rubrum is the most common fungal pathogen in the world, which has been studied as an important dermatophyte model organism. Despite the prevalence of T. rubrum, the available antifungal therapies are not sufficiently efficient. In this study, we performed the first comparison between the two major growth stages of T. rubrum: conidial and mycelial stages, based on their whole-cell proteomes and lysine acetylomes. In total, 4343 proteins were identified in both stages, and 1879 proteins were identified as differentially expressed between the two stages. The results showed that secretory proteases were more abundant in conidia, while aerobic metabolism and protein synthesis were significantly activated in the mycelial stage. In addition, 386 acetylated sites on 285 proteins and 5414 acetylated sites on 2335 proteins were identified in conidia and mycelia, respectively. The acetylation modifications were highly involved in metabolism and protein synthesis in both stages but differentially involved in Kyoto Encyclopedia of Genes and Genomes pathways and in epigenetic regulation between the two stages. Furthermore, inhibition of acetyltransferases or deacetylases significantly inhibited fungal growth and induced apoptosis. These results will enhance our understanding of the biological and physiological characteristics of T. rubrum and facilitate the development of improved therapies targeting these medically important pathogenic fungi.
科研通智能强力驱动
Strongly Powered by AbleSci AI