Analysis versus synthesis in signal priors

先验概率 相似性(几何) 数学 信号(编程语言) 算法 贝叶斯概率 反问题 代数数 计算机科学 应用数学 人工智能 统计 图像(数学) 数学分析 程序设计语言
作者
Michael Elad,Peyman Milanfar,Ron Rubinstein
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:23 (3): 947-968 被引量:708
标识
DOI:10.1088/0266-5611/23/3/007
摘要

The concept of prior probability for signals plays a key role in the successful solution of many inverse problems. Much of the literature on this topic can be divided between analysis-based and synthesis-based priors. Analysis-based priors assign probability to a signal through various forward measurements of it, while synthesis-based priors seek a reconstruction of the signal as a combination of atom signals. The algebraic similarity between the two suggests that they could be strongly related; however, in the absence of a detailed study, contradicting approaches have emerged. While the computationally intensive synthesis approach is receiving ever-increasing attention and is notably preferred, other works hypothesize that the two might actually be much closer, going as far as to suggest that one can approximate the other. In this paper we describe the two prior classes in detail, focusing on the distinction between them. We show that although in the simpler complete and undercomplete formulations the two approaches are equivalent, in their overcomplete formulation they depart. Focusing on the ℓ1 case, we present a novel approach for comparing the two types of priors based on high-dimensional polytopal geometry. We arrive at a series of theoretical and numerical results establishing the existence of an unbridgeable gap between the two.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少华完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
DyG完成签到,获得积分10
5秒前
亚当完成签到 ,获得积分10
5秒前
王博林发布了新的文献求助10
5秒前
6秒前
SAF发布了新的文献求助10
7秒前
xunmi123完成签到,获得积分10
11秒前
13秒前
所所应助暴躁的依秋采纳,获得10
14秒前
cyr完成签到,获得积分10
14秒前
15秒前
15秒前
黑猫完成签到,获得积分10
15秒前
852应助钟迪采纳,获得10
15秒前
wzt完成签到,获得积分10
16秒前
Rondab应助大牛采纳,获得30
19秒前
666发布了新的文献求助10
19秒前
材料小白完成签到 ,获得积分10
21秒前
21秒前
23秒前
大个应助全球采纳,获得10
25秒前
科研通AI5应助研友_5Zl9D8采纳,获得10
25秒前
高屋建瓴完成签到,获得积分10
26秒前
26秒前
张自信发布了新的文献求助10
26秒前
FDSDK发布了新的文献求助10
27秒前
27秒前
哈哈Ye完成签到,获得积分10
27秒前
欣慰的盼芙完成签到 ,获得积分10
28秒前
乐观的草莓完成签到,获得积分10
29秒前
谦让谷菱完成签到,获得积分10
30秒前
31秒前
格物致知发布了新的文献求助10
31秒前
31秒前
32秒前
完美世界应助Ivy采纳,获得10
32秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324