Automated Fault Diagnosis of a Micro Turbine With Comparison to a Neural Network Technique

断层(地质) 黑匣子 计算机科学 人工神经网络 过程(计算) 操作点 涡轮机 实时计算 可靠性工程 瞬态(计算机编程) 电力系统 功率(物理) 汽车工程 工程类 人工智能 电气工程 物理 地质学 地震学 操作系统 机械工程 量子力学
作者
Craig R. Davison,A. M. Birk
出处
期刊:Volume 2: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation; Environmental and Regulatory Affairs 被引量:5
标识
DOI:10.1115/gt2006-91085
摘要

In the predicted future of distributed power generation, a large number of users will operate gas turbine powered cogeneration systems. These systems will be small, relatively inexpensive, and installed in locations without ready access to experts in gas turbine maintenance. Consequently, an automated system to monitor the engine and diagnose the health of the system is required. To remain compatible with the low cost of the overall system, the diagnostic system must also be relatively inexpensive to install and operate. Therefore, a minimum number of extra sensors and computing power should be used. A statistical technique is presented that compares the engine operation over time to the expected trends for particular faults. The technique ranks the probability that each fault is occurring on the engine. The technique can be used online, with daily data from the engine forming a trend for comparison, or, with less accuracy, based on a single operating point. The use of transient operating data with this technique is also examined. This technique has the advantage of providing an automated numerical result of the probability of a particular mode of degradation occurring, but can also produce visual plots of the engine operation. This allows maintenance staff to remain involved in the process, if they wish, rather than the system operating purely as a black box, and provides an easy to understand aid for discussions with operators. The technique is compared to an off the shelf neural network to determine its usefulness in comparison to other diagnostic methods. The test bed was a micro turbojet engine. The data to test the system was obtained from both experiment and computer modeling of the test engine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wink14551发布了新的文献求助30
刚刚
玩命的十三完成签到 ,获得积分10
1秒前
kilig应助十一采纳,获得10
1秒前
2秒前
3秒前
3秒前
jiaojaioo完成签到,获得积分10
3秒前
ryky发布了新的文献求助10
3秒前
蒋丞发布了新的文献求助10
3秒前
妮妮发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
hellocc发布了新的文献求助10
5秒前
芋泥发布了新的文献求助10
5秒前
爱妞完成签到,获得积分10
5秒前
6秒前
冰子完成签到 ,获得积分10
6秒前
6秒前
慕青应助鳗鱼绿蝶采纳,获得10
6秒前
一只A茂发布了新的文献求助10
7秒前
陈龙完成签到,获得积分10
8秒前
传奇3应助科研小萝卜采纳,获得30
8秒前
9秒前
9秒前
小羊小羊完成签到 ,获得积分10
9秒前
打打应助小小喵采纳,获得10
10秒前
koi完成签到,获得积分10
11秒前
12秒前
12秒前
小刘鸭鸭发布了新的文献求助10
12秒前
12秒前
棋鬼王发布了新的文献求助10
12秒前
ycyang发布了新的文献求助10
12秒前
ludens完成签到,获得积分10
13秒前
wp关闭了wp文献求助
13秒前
13秒前
13秒前
Ava应助平常的寻真采纳,获得10
14秒前
深情安青应助芋泥采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524730
求助须知:如何正确求助?哪些是违规求助? 3105601
关于积分的说明 9275012
捐赠科研通 2802788
什么是DOI,文献DOI怎么找? 1538175
邀请新用户注册赠送积分活动 716104
科研通“疑难数据库(出版商)”最低求助积分说明 709191