Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer

医学 磁共振成像 无线电技术 神经组阅片室 放射科 比例危险模型 有效扩散系数 淋巴血管侵犯 逻辑回归 宫颈癌 阶段(地层学) 核医学 癌症 内科学 转移 生物 精神科 古生物学 神经学
作者
Yan Zhou,Hailei Gu,Xinlu Zhang,Zhong-Fu Tian,Xiao‐Quan Xu,Wenwei Tang
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (4): 2540-2551 被引量:21
标识
DOI:10.1007/s00330-021-08326-6
摘要

To conduct multiparametric magnetic resonance imaging (MRI)-derived radiomics based on multi-scale tumor region for predicting disease-free survival (DFS) in early-stage squamous cervical cancer (ESSCC).A total of 191 ESSCC patients (training cohort, n = 135; validation cohort, n = 56) from March 2016 to September 2019 were retrospectively recruited. Radiomics features were derived from the T2-weighted imaging (T2WI), contrast-enhanced T1-weighted imaging (CET1WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) map for each patient. DFS-related radiomics features were selected in 3 target tumor volumes (VOIentire, VOI+5 mm, and VOI-5 mm) to build 3 rad-scores using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Logistic regression was applied to build combined model incorporating rad-scores with clinical risk factors and compared with clinical model alone. Kaplan-Meier analysis was used to further validate prognostic value of selected clinical and radiomics characteristics.Three radiomics scores all showed favorable performances in DFS prediction. Rad-score (VOI+5 mm) performed best with a C-index of 0.750 in the training set and 0.839 in the validation set. Combined model was constructed by incorporating age categorized by 55, Federation of Gynecology and Obstetrics (Figo) stage, and lymphovascular space invasion with rad-score (VOI+5 mm). Combined model performed better than clinical model in DFS prediction in both the training set (C-index 0.815 vs 0.709; p = 0.024) and the validation set (C-index 0.866 vs 0.719; p = 0.001).Multiparametric MRI-derived radiomics based on multi-scale tumor region can aid in the prediction of DFS for ESSCC patients, thereby facilitating clinical decision-making.• Three radiomics scores based on multi-scale tumor region all showed favorable performances in DFS prediction. Rad-score (VOI+5 mm) performed best with favorable C-index values. • Combined model incorporating multiparametric MRI-based radiomics with clinical risk factors performed significantly better in DFS prediction than the clinical model. • Combined model presented as a nomogram can be easily used to predict survival, thereby facilitating clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菲克ovo完成签到,获得积分10
刚刚
佳丽完成签到,获得积分10
1秒前
000完成签到 ,获得积分10
1秒前
陈__发布了新的文献求助10
4秒前
子车傲之完成签到,获得积分10
5秒前
萌神完成签到 ,获得积分10
5秒前
诺hn完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
YAYA完成签到 ,获得积分10
11秒前
lilili关注了科研通微信公众号
11秒前
kk完成签到,获得积分20
11秒前
生动的半山完成签到,获得积分10
12秒前
大个应助ycd采纳,获得10
13秒前
慕青应助超级白昼采纳,获得10
13秒前
米九完成签到,获得积分10
13秒前
lvruon完成签到,获得积分10
13秒前
狗子爱吃桃桃完成签到 ,获得积分10
14秒前
大力小萱发布了新的文献求助10
15秒前
七里香发布了新的文献求助10
15秒前
俞跃发布了新的文献求助10
17秒前
大模型应助木刻青、采纳,获得10
18秒前
千夜冰柠萌完成签到,获得积分10
18秒前
19秒前
qphys完成签到,获得积分10
20秒前
十杯都是柠檬茶完成签到 ,获得积分10
21秒前
虚幻的亦旋完成签到,获得积分10
21秒前
求求接收吧完成签到,获得积分10
24秒前
kkk完成签到,获得积分10
25秒前
小田发布了新的文献求助10
25秒前
酷波er应助追寻的映雁采纳,获得10
25秒前
25秒前
26秒前
ZORROR发布了新的文献求助10
28秒前
微笑发布了新的文献求助10
30秒前
Kriemhild完成签到,获得积分10
30秒前
润清完成签到,获得积分10
30秒前
木刻青、发布了新的文献求助10
31秒前
lilili发布了新的文献求助10
32秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165024
求助须知:如何正确求助?哪些是违规求助? 2816112
关于积分的说明 7911373
捐赠科研通 2475753
什么是DOI,文献DOI怎么找? 1318362
科研通“疑难数据库(出版商)”最低求助积分说明 632098
版权声明 602370