H-Bonding Networks Dictate the Molecular Mechanism of H2O2 Activation by P450

均分解 异构化 化学 键裂 催化作用 激进的 立体化学 基质(水族馆) 过氧化物 化学计量学 光化学 有机化学 海洋学 地质学
作者
Xuan Zhang,Yiping Jiang,Qianqian Chen,Sheng Dong,Yingang Feng,Zhiqi Cong,Sason Shaik,Binju Wang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:11 (14): 8774-8785 被引量:48
标识
DOI:10.1021/acscatal.1c02068
摘要

Understanding the molecular basis for controlled H2O2 activation is of fundamental importance for peroxide-driven catalysis by metalloenzymes. In addition to O2 activation in the presence of stoichiometric reductants, an increasing number of metalloenzymes are found to activate the H2O2 cosubstrate for oxidative transformations in the absence of stoichiometric reductants. Herein, we characterized the X-ray structure of the P450BM3 F87A mutant in complex with the dual-functional small molecule (DFSM) N-(ω-imidazolyl)-hexanoyl-l-phenylalanine (Im-C6-Phe), which enables an efficient peroxygenase activity for P450BM3. Our computational investigations show that the H2O2 activations by P450BM3 are highly dependent on the substrate and the DFSM. In the absence of both the substrate and the DFSM, H2O2 activation via the O–O homolysis mechanism is significantly inhibited by the H-bonding network from the proximal H of H2O2. However, the presence of the substrate expels the solvation waters and disrupts the H-bonding network from the proximal H of H2O2, thus remarkably favoring homolytic O–O cleavage toward Cpd I formation. However, the presence of the DFSM forms a proton channel between the imidazolyl group of the DFSM and the proximal H of H2O2, thus enabling a heterolytic O–O cleavage and Cpd I formation that is greatly favored over the homolysis mechanism. Meanwhile, our simulations demonstrate that the H-bonding network from the distal H of H2O2 is the key to control of the H2O2 activation in the homolytic route. These findings are in line with all available experimental data and highlight the key roles of H-bonding networks in dictating H2O2 activations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
3秒前
刘善行发布了新的文献求助10
4秒前
4秒前
燧人氏发布了新的文献求助10
5秒前
6秒前
fshadow完成签到,获得积分10
6秒前
xwwwww完成签到,获得积分20
7秒前
李Li发布了新的文献求助10
7秒前
7秒前
wenmu完成签到,获得积分10
7秒前
7秒前
油麦菜发布了新的文献求助10
8秒前
9秒前
cdercder应助Yuan采纳,获得10
10秒前
11秒前
11秒前
12秒前
张一二发布了新的文献求助10
13秒前
xfy完成签到,获得积分10
14秒前
出门见喜发布了新的文献求助10
15秒前
ycg完成签到,获得积分10
16秒前
16秒前
ls完成签到,获得积分10
16秒前
李Li完成签到,获得积分10
17秒前
17秒前
秋海棠发布了新的文献求助10
18秒前
潮人完成签到 ,获得积分10
18秒前
19秒前
orixero应助迷路的手机采纳,获得10
20秒前
1231发布了新的文献求助10
21秒前
大豫通宝发布了新的文献求助10
22秒前
22秒前
24秒前
25秒前
多发paper啊完成签到,获得积分10
26秒前
LLL完成签到 ,获得积分10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737385
求助须知:如何正确求助?哪些是违规求助? 3281209
关于积分的说明 10023728
捐赠科研通 2997939
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782304
科研通“疑难数据库(出版商)”最低求助积分说明 749762