人工智能
计算机科学
计算机视觉
接头(建筑物)
降噪
噪音(视频)
光学(聚焦)
图像分辨率
图像(数学)
光学
工程类
物理
建筑工程
作者
Yucheng Lu,Seung Won Jung
出处
期刊:IEEE transactions on image processing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:31: 2390-2404
被引量:9
标识
DOI:10.1109/tip.2022.3155948
摘要
Low-light imaging on mobile devices is typically challenging due to insufficient incident light coming through the relatively small aperture, resulting in low image quality. Most of the previous works on low-light imaging focus either only on a single task such as illumination adjustment, color enhancement, or noise removal; or on a joint illumination adjustment and denoising task that heavily relies on short-long exposure image pairs from specific camera models. These approaches are less practical and generalizable in real-world settings where camera-specific joint enhancement and restoration is required. In this paper, we propose a low-light imaging framework that performs joint illumination adjustment, color enhancement, and denoising to tackle this problem. Considering the difficulty in model-specific data collection and the ultra-high definition of the captured images, we design two branches: a coefficient estimation branch and a joint operation branch. The coefficient estimation branch works in a low-resolution space and predicts the coefficients for enhancement via bilateral learning, whereas the joint operation branch works in a full-resolution space and progressively performs joint enhancement and denoising. In contrast to existing methods, our framework does not need to recollect massive data when adapted to another camera model, which significantly reduces the efforts required to fine-tune our approach for practical usage. Through extensive experiments, we demonstrate its great potential in real-world low-light imaging applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI