Progressive Joint Low-Light Enhancement and Noise Removal for Raw Images

人工智能 计算机科学 计算机视觉 接头(建筑物) 降噪 噪音(视频) 光学(聚焦) 图像分辨率 图像(数学) 光学 工程类 物理 建筑工程
作者
Yucheng Lu,Seung Won Jung
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2390-2404 被引量:9
标识
DOI:10.1109/tip.2022.3155948
摘要

Low-light imaging on mobile devices is typically challenging due to insufficient incident light coming through the relatively small aperture, resulting in low image quality. Most of the previous works on low-light imaging focus either only on a single task such as illumination adjustment, color enhancement, or noise removal; or on a joint illumination adjustment and denoising task that heavily relies on short-long exposure image pairs from specific camera models. These approaches are less practical and generalizable in real-world settings where camera-specific joint enhancement and restoration is required. In this paper, we propose a low-light imaging framework that performs joint illumination adjustment, color enhancement, and denoising to tackle this problem. Considering the difficulty in model-specific data collection and the ultra-high definition of the captured images, we design two branches: a coefficient estimation branch and a joint operation branch. The coefficient estimation branch works in a low-resolution space and predicts the coefficients for enhancement via bilateral learning, whereas the joint operation branch works in a full-resolution space and progressively performs joint enhancement and denoising. In contrast to existing methods, our framework does not need to recollect massive data when adapted to another camera model, which significantly reduces the efforts required to fine-tune our approach for practical usage. Through extensive experiments, we demonstrate its great potential in real-world low-light imaging applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞科研的静静完成签到,获得积分10
刚刚
可爱的函函应助proteinpurify采纳,获得10
1秒前
ashore发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
潇洒的小鸽子完成签到 ,获得积分10
2秒前
3秒前
星星完成签到,获得积分10
4秒前
lx840518发布了新的文献求助20
4秒前
6秒前
6秒前
尊敬曼岚发布了新的文献求助10
6秒前
刘艺珍完成签到,获得积分10
6秒前
ed发布了新的文献求助10
7秒前
leslie完成签到,获得积分10
7秒前
咋了完成签到 ,获得积分10
7秒前
8秒前
安然发布了新的文献求助10
8秒前
9秒前
10秒前
霸气的惜寒完成签到,获得积分10
10秒前
Levi_Liang发布了新的文献求助10
11秒前
11秒前
wanci应助东方既白采纳,获得10
12秒前
13秒前
xxl发布了新的文献求助10
13秒前
leslie发布了新的文献求助10
15秒前
15秒前
深渊与海完成签到,获得积分10
15秒前
白水晶发布了新的文献求助10
15秒前
15秒前
sjf完成签到,获得积分20
16秒前
ashore完成签到,获得积分10
16秒前
18秒前
19秒前
proteinpurify发布了新的文献求助10
19秒前
20秒前
20秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142067
求助须知:如何正确求助?哪些是违规求助? 2793006
关于积分的说明 7805015
捐赠科研通 2449359
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291