Abstract Comprising an emitting layer (EML) constituting a wide‐energy‐gap host, a thermally activated delayed fluorescence (TADF) sensitizer and a conventional fluorescent dopant, TADF‐sensitizing‐fluorescence organic light‐emitting diodes (TSF‐OLEDs) highly depend on component interplay to maximize their performance, which, however, is still under‐researched. Taking the host type (TADF or non‐TADF) and the recombination position (on the host or on the TADF sensitizer) into consideration, the interplay of host and TADF sensitizer is comprehensively studied and manipulated. A wide‐energy‐gap host with TADF and recombination of charges on it are both required to maximize device performances by triggering multiple sensitizing processes to eliminate exciton losses. Based on those findings, a maximum external quantum efficiency (EQE)/power efficiency (PE) of 23.2%/76.9 lm W −1 is realized with a newly developed TADF host, significantly outperforming the reference devices. Further device optimization leads to unprecedently high EQE/PE of 24.2%/89.5 lm W −1 and a half‐lifetime of over 400 h at an initial luminance of 2000 cd m −2 , with the peak PE being the highest value among the reported TSF‐OLEDs. This work reveals the importance of manipulating the component interplay in EMLs, opening a new avenue toward highly efficient TSF‐OLEDs.