子空间拓扑
计算机科学
趋同(经济学)
数学优化
分布式算法
功能(生物学)
任务(项目管理)
算法
分布式计算
人工智能
数学
进化生物学
管理
经济
生物
经济增长
作者
Paolo Di Lorenzo,Sergio Barbarossa,Stefania Sardellitti
标识
DOI:10.1109/icassp.2019.8682719
摘要
We study distributed processing of subspace-constrained signals in multi-agent networks with sparse connectivity. We introduce the first optimization framework based on distributed subspace projections, aimed at minimizing a network cost function depending on the specific processing task, while imposing subspace constraints on the final solution. The proposed method hinges on (sub)gradient techniques while leveraging distributed projections as a mechanism to enforce subspace constraints in a cooperative and distributed fashion. Asymptotic convergence to optimal solutions of the problem is established under different assumptions (e.g., nondifferentiability, nonconvexity, etc.) on the objective function. Finally, numerical tests assess the performance of the proposed distributed strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI