Novel Effective Connectivity Inference Using Ultra-Group Constrained Orthogonal Forward Regression and Elastic Multilayer Perceptron Classifier for MCI Identification

计算机科学 模式识别(心理学) 人工智能 分类器(UML) 多层感知器 推论 网络拓扑 弹性网正则化 感知器 回归 人工神经网络 机器学习 数学 特征选择 统计 操作系统
作者
Yang Li,Hao Yang,Baiying Lei,Jingyu Liu,Chong‐Yaw Wee
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (5): 1227-1239 被引量:48
标识
DOI:10.1109/tmi.2018.2882189
摘要

Mild cognitive impairment (MCI) detection is important, such that appropriate interventions can be imposed to delay or prevent its progression to severe stages, including Alzheimer's disease (AD). Brain connectivity network inferred from the functional magnetic resonance imaging data has been prevalently used to identify the individuals with MCI/AD from the normal controls. The capability to detect the causal or effective connectivity is highly desirable for understanding directed functional interactions between brain regions and further helping the detection of MCI. In this paper, we proposed a novel sparse constrained effective connectivity inference method and an elastic multilayer perceptron classifier for MCI identification. Specifically, a ultra-group constrained structure detection algorithm is first designed to identify the parsimonious topology of the effective connectivity network, in which the weak derivatives of the observable data are considered. Second, based on the identified topology structure, an effective connectivity network is then constructed by using an ultra-orthogonal forward regression algorithm to minimize the shrinking effect of the group constraint-based method. Finally, the effective connectivity network is validated in MCI identification using an elastic multilayer perceptron classifier, which extracts lower to higher level information from initial input features and hence improves the classification performance. Relatively high classification accuracy is achieved by the proposed method when compared with the state-of-the-art classification methods. Furthermore, the network analysis results demonstrate that MCI patients suffer a rich club effect loss and have decreased connectivity among several brain regions. These findings suggest that the proposed method not only improves the classification performance but also successfully discovers critical disease-related neuroimaging biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆家麟发布了新的文献求助20
刚刚
小邹完成签到,获得积分20
刚刚
笑笑小小发布了新的文献求助10
1秒前
赘婿应助成就的念双采纳,获得10
1秒前
2秒前
3秒前
Jasper应助夕夜采纳,获得10
4秒前
bkagyin应助lzj采纳,获得10
4秒前
Jeneration完成签到 ,获得积分10
5秒前
liu完成签到,获得积分10
6秒前
林小乌龟完成签到,获得积分10
6秒前
6秒前
yar应助犹豫机器猫采纳,获得10
8秒前
8秒前
8秒前
8秒前
自然的柠檬完成签到,获得积分10
9秒前
9秒前
10秒前
科研通AI2S应助xiu-er采纳,获得10
12秒前
Orange应助春风依旧采纳,获得10
12秒前
小麦发布了新的文献求助10
12秒前
虞剑发布了新的文献求助10
13秒前
笑笑小小完成签到,获得积分20
14秒前
15秒前
陈qy完成签到,获得积分10
16秒前
16秒前
16秒前
科研通AI2S应助taoeric采纳,获得10
17秒前
18秒前
劲秉应助科研通管家采纳,获得10
20秒前
Akim应助科研通管家采纳,获得10
20秒前
21秒前
小二郎应助vide采纳,获得30
21秒前
如果多年后完成签到 ,获得积分10
21秒前
22秒前
彭于晏应助持卿采纳,获得10
22秒前
lzj发布了新的文献求助10
22秒前
23秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297339
求助须知:如何正确求助?哪些是违规求助? 2932768
关于积分的说明 8459060
捐赠科研通 2605549
什么是DOI,文献DOI怎么找? 1422392
科研通“疑难数据库(出版商)”最低求助积分说明 661383
邀请新用户注册赠送积分活动 644677