Progress and challenge for computational quantification of tissue immune cells

免疫系统 计算机科学 电池类型 计算生物学 计算模型 水准点(测量) 转录组 生物 细胞 人工智能 免疫学 基因表达 基因 遗传学 大地测量学 地理
作者
Ziyi Chen,Aiping Wu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
被引量:5
标识
DOI:10.1093/bib/bbaa358
摘要

Tissue immune cells have long been recognized as important regulators for the maintenance of balance in the body system. Quantification of the abundance of different immune cells will provide enhanced understanding of the correlation between immune cells and normal or abnormal situations. Currently, computational methods to predict tissue immune cell compositions from bulk transcriptomes have been largely developed. Therefore, summarizing the advantages and disadvantages is appropriate. In addition, an examination of the challenges and possible solutions for these computational models will assist the development of this field. The common hypothesis of these models is that the expression of signature genes for immune cell types might represent the proportion of immune cells that contribute to the tissue transcriptome. In general, we grouped all reported tools into three groups, including reference-free, reference-based scoring and reference-based deconvolution methods. In this review, a summary of all the currently reported computational immune cell quantification tools and their applications, limitations, and perspectives are presented. Furthermore, some critical problems are found that have limited the performance and application of these models, including inadequate immune cell type, the collinearity problem, the impact of the tissue environment on the immune cell expression level, and the deficiency of standard datasets for model validation. To address these issues, tissue specific training datasets that include all known immune cells, a hierarchical computational framework, and benchmark datasets including both tissue expression profiles and the abundances of all the immune cells are proposed to further promote the development of this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞翔的企鹅应助luo采纳,获得10
5秒前
niuniu发布了新的文献求助10
5秒前
雪山飞虹完成签到,获得积分10
12秒前
顺意发布了新的文献求助10
13秒前
秀琴完成签到,获得积分10
17秒前
儒雅的如松完成签到 ,获得积分10
17秒前
科研通AI2S应助贾南烟采纳,获得10
24秒前
AlexLee完成签到,获得积分10
24秒前
araul完成签到,获得积分10
27秒前
28秒前
小二郎应助123采纳,获得10
30秒前
Mm完成签到,获得积分10
31秒前
NoNoQ完成签到 ,获得积分10
34秒前
mmm发布了新的文献求助10
35秒前
雨柏完成签到 ,获得积分10
39秒前
43秒前
NoNoQ发布了新的文献求助10
45秒前
45秒前
chall完成签到,获得积分10
47秒前
花盛完成签到,获得积分10
47秒前
余小涛发布了新的文献求助10
49秒前
123发布了新的文献求助10
49秒前
50秒前
太叔文博完成签到,获得积分0
50秒前
concise完成签到 ,获得积分10
51秒前
sunny完成签到 ,获得积分10
51秒前
葫芦娃发布了新的文献求助10
54秒前
6plus1发布了新的文献求助10
59秒前
Chanton_Zhu完成签到,获得积分10
1分钟前
1分钟前
明亮的傲珊完成签到,获得积分20
1分钟前
正直的松鼠完成签到 ,获得积分10
1分钟前
共享精神应助顺意采纳,获得10
1分钟前
1分钟前
乐乐应助明亮的傲珊采纳,获得10
1分钟前
简单山槐完成签到,获得积分10
1分钟前
月亮在o完成签到,获得积分10
1分钟前
星辰大海应助啦啦啦啦啦采纳,获得10
1分钟前
无花果应助dy采纳,获得10
1分钟前
跳不起来的大神完成签到 ,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: an ecosystem perspective 800
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3370129
求助须知:如何正确求助?哪些是违规求助? 2988758
关于积分的说明 8732598
捐赠科研通 2671682
什么是DOI,文献DOI怎么找? 1463627
科研通“疑难数据库(出版商)”最低求助积分说明 677287
邀请新用户注册赠送积分活动 668461