Regional SUV quantification in hybrid PET/MR, a comparison of two atlas-based automatic brain segmentation methods

医学 地图集(解剖学) 心脏成像 核医学 分割 心脏宠物 正电子发射断层摄影术 医学物理学 人工智能 放射科 解剖 计算机科学
作者
Weiwei Ruan,Xun Sun,Xuehan Hu,Fang Liu,Fan Hu,Jinxia Guo,Yongxue Zhang,Xiaoli Lan
出处
期刊:EJNMMI research [Springer Nature]
卷期号:10 (1) 被引量:9
标识
DOI:10.1186/s13550-020-00648-8
摘要

Abstract Background Quantitative analysis of brain positron-emission tomography (PET) depends on structural segmentation, which can be time-consuming and operator-dependent when performed manually. Previous automatic segmentation usually registered subjects’ images onto an atlas template (defined as RSIAT here) for group analysis, which changed the individuals’ images and probably affected regional PET segmentation. In contrast, we could register atlas template to subjects’ images (RATSI), which created an individual atlas template and may be more accurate for PET segmentation. We segmented two representative brain areas in twenty Parkinson disease (PD) and eight multiple system atrophy (MSA) patients performed in hybrid positron-emission tomography/magnetic resonance imaging (PET/MR). The segmentation accuracy was evaluated using the Dice coefficient (DC) and Hausdorff distance (HD), and the standardized uptake value (SUV) measurements of these two automatic segmentation methods were compared, using manual segmentation as a reference. Results The DC of RATSI increased, and the HD decreased significantly ( P < 0.05) compared with the RSIAT in PD, while the results of one-way analysis of variance (ANOVA) found no significant differences in the SUV mean and SUV max among the two automatic and the manual segmentation methods. Further, RATSI was used to compare regional differences in cerebral metabolism pattern between PD and MSA patients. The SUV mean in the segmented cerebellar gray matter for the MSA group was significantly lower compared with the PD group ( P < 0.05), which is consistent with previous reports. Conclusion The RATSI was more accurate for the caudate nucleus and putamen automatic segmentation and can be used for regional PET analysis in hybrid PET/MR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjjoey完成签到,获得积分10
刚刚
SCIAI应助Jean采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
cocolu应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
沉默的海亦完成签到,获得积分10
2秒前
cocolu应助科研通管家采纳,获得10
2秒前
ifanyz完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得30
3秒前
山河入梦来完成签到,获得积分10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
wiiiiiiii发布了新的文献求助10
3秒前
cocolu应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得30
4秒前
4秒前
茶艺大师づ完成签到,获得积分10
5秒前
5秒前
充电宝应助靓丽的安筠采纳,获得10
5秒前
安雯完成签到,获得积分10
5秒前
5秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708