Regional SUV quantification in hybrid PET/MR, a comparison of two atlas-based automatic brain segmentation methods

医学 地图集(解剖学) 心脏成像 核医学 分割 心脏宠物 正电子发射断层摄影术 医学物理学 人工智能 放射科 解剖 计算机科学
作者
Weiwei Ruan,Xun Sun,Xuehan Hu,Fang Liu,Fan Hu,Jinxia Guo,Yongxue Zhang,Xiaoli Lan
出处
期刊:EJNMMI research [Springer Nature]
卷期号:10 (1) 被引量:9
标识
DOI:10.1186/s13550-020-00648-8
摘要

Abstract Background Quantitative analysis of brain positron-emission tomography (PET) depends on structural segmentation, which can be time-consuming and operator-dependent when performed manually. Previous automatic segmentation usually registered subjects’ images onto an atlas template (defined as RSIAT here) for group analysis, which changed the individuals’ images and probably affected regional PET segmentation. In contrast, we could register atlas template to subjects’ images (RATSI), which created an individual atlas template and may be more accurate for PET segmentation. We segmented two representative brain areas in twenty Parkinson disease (PD) and eight multiple system atrophy (MSA) patients performed in hybrid positron-emission tomography/magnetic resonance imaging (PET/MR). The segmentation accuracy was evaluated using the Dice coefficient (DC) and Hausdorff distance (HD), and the standardized uptake value (SUV) measurements of these two automatic segmentation methods were compared, using manual segmentation as a reference. Results The DC of RATSI increased, and the HD decreased significantly ( P < 0.05) compared with the RSIAT in PD, while the results of one-way analysis of variance (ANOVA) found no significant differences in the SUV mean and SUV max among the two automatic and the manual segmentation methods. Further, RATSI was used to compare regional differences in cerebral metabolism pattern between PD and MSA patients. The SUV mean in the segmented cerebellar gray matter for the MSA group was significantly lower compared with the PD group ( P < 0.05), which is consistent with previous reports. Conclusion The RATSI was more accurate for the caudate nucleus and putamen automatic segmentation and can be used for regional PET analysis in hybrid PET/MR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YE完成签到,获得积分10
刚刚
2鱼完成签到,获得积分10
刚刚
FooLeup立仔完成签到,获得积分10
刚刚
1秒前
顾矜应助JUll采纳,获得10
1秒前
Amai发布了新的文献求助20
1秒前
小马甲应助Lucas采纳,获得10
1秒前
2秒前
zZ发布了新的文献求助10
2秒前
qi完成签到,获得积分10
3秒前
标致缘郡发布了新的文献求助10
3秒前
miawei完成签到,获得积分10
4秒前
4秒前
wangfu发布了新的文献求助10
4秒前
明理依云完成签到,获得积分10
4秒前
4秒前
5秒前
二世小卒完成签到 ,获得积分10
5秒前
和谐乌龟完成签到,获得积分10
6秒前
阳尧完成签到,获得积分10
6秒前
帅气惜霜发布了新的文献求助10
6秒前
6秒前
kkkklo发布了新的文献求助30
8秒前
传奇3应助润润轩轩采纳,获得10
8秒前
8秒前
10秒前
和谐乌龟发布了新的文献求助10
10秒前
zZ完成签到,获得积分10
10秒前
科研小白完成签到,获得积分10
10秒前
LYY发布了新的文献求助10
11秒前
wangfu完成签到,获得积分10
11秒前
ding应助Dddd采纳,获得10
12秒前
yin发布了新的文献求助10
12秒前
大模型应助张张采纳,获得10
12秒前
Akim应助吾问无为谓采纳,获得10
13秒前
13秒前
神勇的冰姬完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794