医学
地图集(解剖学)
心脏成像
核医学
分割
心脏宠物
正电子发射断层摄影术
医学物理学
人工智能
放射科
解剖
计算机科学
作者
Weiwei Ruan,Xun Sun,Xuehan Hu,Fang Liu,Fan Hu,Jinxia Guo,Yongxue Zhang,Xiaoli Lan
标识
DOI:10.1186/s13550-020-00648-8
摘要
Abstract Background Quantitative analysis of brain positron-emission tomography (PET) depends on structural segmentation, which can be time-consuming and operator-dependent when performed manually. Previous automatic segmentation usually registered subjects’ images onto an atlas template (defined as RSIAT here) for group analysis, which changed the individuals’ images and probably affected regional PET segmentation. In contrast, we could register atlas template to subjects’ images (RATSI), which created an individual atlas template and may be more accurate for PET segmentation. We segmented two representative brain areas in twenty Parkinson disease (PD) and eight multiple system atrophy (MSA) patients performed in hybrid positron-emission tomography/magnetic resonance imaging (PET/MR). The segmentation accuracy was evaluated using the Dice coefficient (DC) and Hausdorff distance (HD), and the standardized uptake value (SUV) measurements of these two automatic segmentation methods were compared, using manual segmentation as a reference. Results The DC of RATSI increased, and the HD decreased significantly ( P < 0.05) compared with the RSIAT in PD, while the results of one-way analysis of variance (ANOVA) found no significant differences in the SUV mean and SUV max among the two automatic and the manual segmentation methods. Further, RATSI was used to compare regional differences in cerebral metabolism pattern between PD and MSA patients. The SUV mean in the segmented cerebellar gray matter for the MSA group was significantly lower compared with the PD group ( P < 0.05), which is consistent with previous reports. Conclusion The RATSI was more accurate for the caudate nucleus and putamen automatic segmentation and can be used for regional PET analysis in hybrid PET/MR.
科研通智能强力驱动
Strongly Powered by AbleSci AI