Regional SUV quantification in hybrid PET/MR, a comparison of two atlas-based automatic brain segmentation methods

医学 地图集(解剖学) 心脏成像 核医学 分割 心脏宠物 正电子发射断层摄影术 医学物理学 人工智能 放射科 解剖 计算机科学
作者
Weiwei Ruan,Xun Sun,Xuehan Hu,Fang Liu,Fan Hu,Jinxia Guo,Yongxue Zhang,Xiaoli Lan
出处
期刊:EJNMMI research [Springer Nature]
卷期号:10 (1) 被引量:9
标识
DOI:10.1186/s13550-020-00648-8
摘要

Abstract Background Quantitative analysis of brain positron-emission tomography (PET) depends on structural segmentation, which can be time-consuming and operator-dependent when performed manually. Previous automatic segmentation usually registered subjects’ images onto an atlas template (defined as RSIAT here) for group analysis, which changed the individuals’ images and probably affected regional PET segmentation. In contrast, we could register atlas template to subjects’ images (RATSI), which created an individual atlas template and may be more accurate for PET segmentation. We segmented two representative brain areas in twenty Parkinson disease (PD) and eight multiple system atrophy (MSA) patients performed in hybrid positron-emission tomography/magnetic resonance imaging (PET/MR). The segmentation accuracy was evaluated using the Dice coefficient (DC) and Hausdorff distance (HD), and the standardized uptake value (SUV) measurements of these two automatic segmentation methods were compared, using manual segmentation as a reference. Results The DC of RATSI increased, and the HD decreased significantly ( P < 0.05) compared with the RSIAT in PD, while the results of one-way analysis of variance (ANOVA) found no significant differences in the SUV mean and SUV max among the two automatic and the manual segmentation methods. Further, RATSI was used to compare regional differences in cerebral metabolism pattern between PD and MSA patients. The SUV mean in the segmented cerebellar gray matter for the MSA group was significantly lower compared with the PD group ( P < 0.05), which is consistent with previous reports. Conclusion The RATSI was more accurate for the caudate nucleus and putamen automatic segmentation and can be used for regional PET analysis in hybrid PET/MR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术垃圾发布了新的文献求助10
1秒前
Steve发布了新的文献求助10
1秒前
彩云追月发布了新的文献求助10
1秒前
1秒前
lopik发布了新的文献求助10
2秒前
2秒前
IU秋阳发布了新的文献求助10
2秒前
2秒前
科研通AI6应助子小雨记采纳,获得10
2秒前
快快跑咯发布了新的文献求助10
2秒前
3秒前
lty613669158完成签到,获得积分10
3秒前
努力发布了新的文献求助10
3秒前
大个应助踏实绮琴采纳,获得10
4秒前
树懒发布了新的文献求助20
5秒前
施铭发布了新的文献求助30
5秒前
xiezhenghong发布了新的文献求助10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
QOP应助科研通管家采纳,获得10
5秒前
破忒头应助科研通管家采纳,获得10
5秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
哆啦十七应助科研通管家采纳,获得10
6秒前
LINGO发布了新的文献求助10
6秒前
深情的芝麻完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Hilda007应助科研通管家采纳,获得20
6秒前
哆啦十七应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
哆啦十七应助科研通管家采纳,获得10
7秒前
哆啦十七应助科研通管家采纳,获得10
7秒前
zhonglv7应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
哆啦十七应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352387
求助须知:如何正确求助?哪些是违规求助? 4485204
关于积分的说明 13962313
捐赠科研通 4385188
什么是DOI,文献DOI怎么找? 2409321
邀请新用户注册赠送积分活动 1401751
关于科研通互助平台的介绍 1375322